Abstract

The modeling of photovoltaic (PV) systems is substantial for the estimation of energy production and efficiency analysis in the PV systems under the changing environmental conditions. A PV model mathematically expresses the electrical characteristic of the PV modules according to temperature and irradiance. The most popular electrical circuit models are the single-diode model (SDM) and the double-diode model (DDM). Considering accuracy and complexity, SDM was used in this paper. In the equivalent circuit model used to estimate the electrical behavior of the PV modules, the parameter estimating has become an optimization problem. In recent studies, it is seen that metaheuristic algorithms are often employed in solving this optimization problem. In this paper, a new six-parameter PV model is proposed to improve the accuracy of the five-parameter SDM, taking into account the temperature dependence of the series resistance. Particle swarm optimization (PSO) and a couple of metaheuristic algorithms have been executed to estimate six unknown parameters of the proposed model under standard test conditions (STC: 25 °C, 1000 W/m2, AM1.5) using current–voltage (I–V) data of PV module. In order to evaluate the performance of the proposed method under the changing environmental conditions, it was compared with the three methods commonly used in the literature. Accuracy of the proposed model has been indicated by the root mean square error (RMSE) within the range of current data and the model current values. Simulation results demonstrate that the proposed model can predict the I–V curve for the PV modules with high accuracy.

References

1.
Li
,
G.
,
Jin
,
Y.
,
Akram
,
M. W.
,
Chen
,
X.
, and
Ji
,
J.
,
2018
, “
Application of Bio-Inspired Algorithms in Maximum Power Point Tracking for PV Systems Under Partial Shading Conditions—A Review
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
840
873
. 10.1016/j.rser.2017.08.034
2.
Belhachat
,
F.
, and
Larbes
,
C.
,
2018
, “
A Review of Global Maximum Power Point Tracking Techniques of Photovoltaic System Under Partial Shading Conditions
,”
Renew. Sustain. Energy Rev.
,
92
, pp.
513
553
. 10.1016/j.rser.2018.04.094
3.
Kumari
,
P. A.
, and
Geethanjali
,
P.
,
2018
, “
Parameter Estimation for Photovoltaic System Under Normal and Partial Shading Conditions: A Survey
,”
Renew. Sustain. Energy Rev.
,
84
, pp.
1
11
. 10.1016/j.rser.2017.10.051
4.
Abbassi
,
R.
,
Abbassi
,
A.
,
Jemli
,
M.
, and
Chebbi
,
S.
,
2018
, “
Identification of Unknown Parameters of Solar Cell Models: A Comprehensive Overview of Available Approaches
,”
Renew. Sustain. Energy Rev.
,
90
, pp.
453
474
. 10.1016/j.rser.2018.03.011
5.
Humada
,
A. M.
,
Hojabri
,
M.
,
Mekhilef
,
S.
, and
Hamada
,
H. M.
,
2016
, “
Solar Cell Parameters Extraction Based on Single and Double-Diode Models: A Review
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
494
509
. 10.1016/j.rser.2015.11.051
6.
Hasan
,
M. A.
, and
Parida
,
S. K.
,
2016
, “
An Overview of Solar Photovoltaic Panel Modeling Based on Analytical and Experimental Viewpoint
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
75
83
. 10.1016/j.rser.2016.01.087
7.
Jordehi
,
A. R.
,
2016
, “
Parameter Estimation of Solar Photovoltaic (PV) Cells: A Review
,”
Renew. Sustain. Energy Rev.
,
61
, pp.
354
371
. 10.1016/j.rser.2016.03.049
8.
Azevedo
,
G. M. S.
,
Cavalcanti
,
M. C.
,
Oliveira
,
K. C.
,
Neves
,
F. A. S.
, and
Lins
,
Z. D.
,
2009
, “
Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031006
. 10.1115/1.3142827
9.
Adıgüzel
,
E.
,
Özer
,
E.
,
Akgündoğdu
,
A.
, and
Ersoy Yılmaz
,
A.
,
2019
, “
Prediction of Dust Particle Size Effect on Efficiency of Photovoltaic Modules With ANFIS: An Experimental Study in Aegean Region, Turkey
,”
Sol. Energy
,
177
, pp.
690
702
. 10.1016/j.solener.2018.12.012
10.
Ciulla
,
G.
,
Lo Brano
,
V.
,
Di Dio
,
V.
, and
Cipriani
,
G.
,
2014
, “
A Comparison of Different One-Diode Models for the Representation of I-V Characteristic of a PV Cell
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
684
696
. 10.1016/j.rser.2014.01.027
11.
Lineykin
,
S.
,
Averbukh
,
M.
, and
Kuperman
,
A.
,
2014
, “
An Improved Approach to Extract the Single-Diode Equivalent Circuit Parameters of a Photovoltaic Cell/Panel
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
282
289
. 10.1016/j.rser.2013.10.015
12.
Tina
,
G. M.
,
2017
, “
Simulation Model of Photovoltaic and Photovoltaicx/ Thermal Module/String Under Nonuniform Distribution of Irradiance and Temperature
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021013
. 10.1115/1.4035152
13.
Appelbaum
,
J.
, and
Peled
,
A.
,
2014
, “
Parameters Extraction of Solar Cells—A Comparative Examination of Three Methods
,”
Sol. Energy Mater. Sol. Cells
,
122
, pp.
164
173
. 10.1016/j.solmat.2013.11.011
14.
Feng
,
X.
,
Qing
,
X.
,
Chung
,
C. Y.
,
Qiao
,
H.
,
Wang
,
X.
, and
Zhao
,
X.
,
2016
, “
A Simple Parameter Estimation Approach to Modeling of Photovoltaic Modules Based on Datasheet Values
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051010
. 10.1115/1.4034357
15.
Ishaque
,
K.
,
Salam
,
Z.
, and
Taheri
,
H.
,
2011
, “
Simple, Fast and Accurate Two-Diode Model for Photovoltaic Modules
,”
Sol. Energy Mater. Sol. Cells
,
95
(
2
), pp.
586
594
. 10.1016/j.solmat.2010.09.023
16.
Ishaque
,
K.
,
Salam
,
Z.
,
Taheri
,
H.
, and
Syafaruddin
,
2011
, “
Modeling and Simulation of Photovoltaic (PV) System During Partial Shading Based on a Two-Diode Model
,”
Simul. Model. Pract. Th.
,
19
(
7
), pp.
1613
1626
. 10.1016/j.simpat.2011.04.005
17.
Khanna
,
V.
,
Das
,
B. K.
,
Bisht
,
D.
,
Vandana
, and
Singh
,
P. K.
,
2015
, “
A Three Diode Model for Industrial Solar Cells and Estimation of Solar Cell Parameters Using PSO Algorithm
,”
Renew. Energy
,
78
, pp.
105
113
. 10.1016/j.renene.2014.12.072
18.
Jena
,
D.
, and
Ramana
,
V. V.
,
2015
, “
Modeling of Photovoltaic System for Uniform and Non-Uniform Irradiance: A Critical Review
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
400
417
. 10.1016/j.rser.2015.07.079
19.
Sera
,
D.
,
Teodorescu
,
R.
, and
Rodriguez
,
P.
,
2007
, “
PV Panel Model Based on Datasheet Values
,”
2007 IEEE International Symposium on Industrial Electronics
,
Vigo, Spain
,
June 4–7
, pp.
2392
2396
.
20.
Mahmoud
,
Y. A.
,
Xiao
,
W.
, and
Zeineldin
,
H. H.
,
2013
, “
A Parameterization Approach for Enhancing PV Model Accuracy
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5708
5716
. 10.1109/TIE.2012.2230606
21.
Mahmoud
,
Y.
,
Xiao
,
W.
, and
Zeineldin
,
H. H.
,
2012
, “
A Simple Approach to Modeling and Simulation of Photovoltaic Modules
,”
IEEE Trans. Sustain. Energy
,
3
(
1
), pp.
185
186
. 10.1109/TSTE.2011.2170776
22.
Gradella Villalva
,
M.
,
Rafael Gazoli
,
J.
, and
Ruppert Filho
,
E.
,
2009
, “
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays
,”
IEEE Trans. Power Electron.
,
24
(
5
), pp.
1198
1208
. 10.1109/TPEL.2009.2013862
23.
Chatterjee
,
A.
,
Keyhani
,
A.
, and
Kapoor
,
D.
,
2011
, “
Identification of Photovoltaic Source Models
,”
IEEE Trans. Energy Conv.
,
26
(
3
), pp.
883
889
. 10.1109/TEC.2011.2159268
24.
Easwarakhanthan
,
T.
,
Bottin
,
J.
,
Bouhouch
,
I.
, and
Boutrit
,
C.
,
1986
, “
Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters With Microcomputers
,”
Int. J. Solar Energy
,
4
(
1
), pp.
1
12
. 10.1080/01425918608909835
25.
Dkhichi
,
F.
,
Oukarfi
,
B.
,
Fakkar
,
A.
, and
Belbounaguia
,
N.
,
2014
, “
Parameter Identification of Solar Cell Model Using Levenberg–Marquardt Algorithm Combined With Simulated Annealing
,”
Sol. Energy
,
110
, pp.
781
788
. 10.1016/j.solener.2014.09.033
26.
Zagrouba
,
M.
,
Sellami
,
A.
,
Bouaïcha
,
M.
, and
Ksouri
,
M.
,
2010
, “
Identification of PV Solar Cells and Modules Parameters Using the Genetic Algorithms: Application to Maximum Power Extraction
,”
Sol. Energy
,
84
(
5
), pp.
860
866
. 10.1016/j.solener.2010.02.012
27.
El-Naggar
,
K. M.
,
AlRashidi
,
M. R.
,
AlHajri
,
M. F.
, and
Al-Othman
,
A. K.
,
2012
, “
Simulated Annealing Algorithm for Photovoltaic Parameters Identification
,”
Sol. Energy
,
86
(
1
), pp.
266
274
. 10.1016/j.solener.2011.09.032
28.
Ye
,
M.
,
Wang
,
X.
, and
Xu
,
Y.
,
2009
, “
Parameter Extraction of Solar Cells Using Particle Swarm Optimization
,”
J. Appl. Phys.
,
105
(
9
), p.
9
. 10.1063/1.3122082
29.
Askarzadeh
,
A.
, and
Rezazadeh
,
A.
,
2012
, “
Parameter Identification for Solar Cell Models Using Harmony Search-Based Algorithms
,”
Sol. Energy
,
86
(
11
), pp.
3241
3249
. 10.1016/j.solener.2012.08.018
30.
Ma
,
J.
,
Ting
,
T. O.
,
Man
,
K. L.
,
Zhang
,
N.
,
Guan
,
S.-U.
, and
Wong
,
P. W. H.
,
2013
, “
Parameter Estimation of Photovoltaic Models via Cuckoo Search
,”
J. Appl. Math.
,
2013
, pp.
1
8
. 10.1155/2013/362619
31.
Oliva
,
D.
,
Cuevas
,
E.
, and
Pajares
,
G.
,
2014
, “
Parameter Identification of Solar Cells Using Artificial Bee Colony Optimization
,”
Energy
,
72
, pp.
93
102
. 10.1016/j.energy.2014.05.011
32.
Alam
,
D. F.
,
Yousri
,
D. A.
, and
Eteiba
,
M. B.
,
2015
, “
Flower Pollination Algorithm Based Solar PV Parameter Estimation
,”
Energy Convers. Manage.
,
101
, pp.
410
422
. 10.1016/j.enconman.2015.05.074
33.
Ishaque
,
K.
, and
Salam
,
Z.
,
2011
, “
An Improved Modeling Method to Determine the Model Parameters of Photovoltaic (PV) Modules Using Differential Evolution (DE)
,”
Sol. Energy
,
85
(
9
), pp.
2349
2359
. 10.1016/j.solener.2011.06.025
34.
Louzazni
,
M.
,
Khouya
,
A.
,
Amechnoue
,
K.
, and
Craciunescu
,
A.
,
2017
, “
Parameter Estimation of Photovoltaic Module Using Bio-Inspired Firefly Algorithm
,”
Proceedings of 2016 International Renewable and Sustainable Energy Conference, IRSEC 2016
,
Marrakech, Morocco
,
Nov. 14–17
, pp.
591
596
.
35.
AlHajri
,
M. F.
,
El-Naggar
,
K. M.
,
AlRashidi
,
M. R.
, and
Al-Othman
,
A. K.
,
2012
, “
Optimal Extraction of Solar Cell Parameters Using Pattern Search
,”
Renew. Energy
,
44
, pp.
238
245
. 10.1016/j.renene.2012.01.082
36.
Guo
,
L.
,
Meng
,
Z.
,
Sun
,
Y.
, and
Wang
,
L.
,
2016
, “
Parameter Identification and Sensitivity Analysis of Solar Cell Models With Cat Swarm Optimization Algorithm
,”
Energy Convers. Manage.
,
108
, pp.
520
528
. 10.1016/j.enconman.2015.11.041
37.
Sudhakar Babu
,
T.
,
Prasanth Ram
,
J.
,
Sangeetha
,
K.
,
Laudani
,
A.
, and
Rajasekar
,
N.
,
2016
, “
Parameter Extraction of Two Diode Solar PV Model Using Fireworks Algorithm
,”
Sol. Energy
,
140
, pp.
265
276
. 10.1016/j.solener.2016.10.044
38.
Rajasekar
,
N.
,
Krishna Kumar
,
N.
, and
Venugopalan
,
R.
,
2013
, “
Bacterial Foraging Algorithm Based Solar PV Parameter Estimation
,”
Sol. Energy
,
97
, pp.
255
265
. 10.1016/j.solener.2013.08.019
39.
Talbi
,
E.-G.
,
2009
,
Metaheuristics From Design to Implementation
,
John Wiley & Sons
.
Hoboken, NJ
.
40.
Glover
,
F.
, and
Kochenberger
,
G. A.
,
2003
,
Handbook of Metaheuristics
,
Kluwer Academic Publishers
,
Dordrecht
.
41.
Güneş
,
F.
,
Belen
,
M. A.
, and
Mahouti
,
P.
,
2018
, “
Competitive Evolutionary Algorithms for Building Performance Database of a Microwave Transistor
,”
Int. J. Circ. Theor. Appl.
,
46
(
2
), pp.
244
258
. 10.1002/cta.2386
42.
Mahouti
,
P.
,
2019
, “
Design Optimization of a Pattern Reconfigurable Microstrip Antenna Using Differential Evolution and 3D EM Simulation-Based Neural Network Model
,”
Int. J. RF Microw. Comput. Aid. Eng.
,
29
(
8
), pp.
1
10
. 10.1002/mmce.21796
43.
Pillai
,
D. S.
, and
Rajasekar
,
N.
,
2018
, “
Metaheuristic Algorithms for PV Parameter Identification: A Comprehensive Review With an Application to Threshold Setting for Fault Detection in PV Systems
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
3503
3525
. 10.1016/j.rser.2017.10.107
44.
Jervase
,
J. A.
,
Bourdoucen
,
H.
, and
Al-Lawati
,
A.
,
2001
, “
Solar Cell Parameter Extraction Using Genetic Algorithms
,”
Meas. Sci. Technol.
,
12
(
11
), pp.
1922
1925
. 10.1088/0957-0233/12/11/322
45.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
, pp.
1942
1948
.
46.
Datasheet of Kyocera KC200GT
.
47.
Shandilya
,
S. K.
,
Shandilya
,
S.
, and
Nagar
,
A. K.
,
2019
,
Advances in Nature-Inspired Computing and Applications
, vol.
1
,
Springer International Publishing
,
Switzerland
.
48.
Jieming
,
Ma.
,
2014
, “
Optimization Approaches for Parameter Estimation and Maximum Power Point Tracking (MPPT) of Photovoltaic Systems
,” Ph.D. Dissertation, University of Liverpool.
You do not currently have access to this content.