This paper presents an optimization algorithm for designing linear concentrating solar collectors using stochastic programming. A Monte Carlo technique is used to quantify the performance of the collector design in terms of an objective function, which is then minimized using a modified Kiefer–Wolfowitz algorithm that uses sample size and step size controls. This process is more efficient than traditional “trial-and-error” methods and can be applied more generally than techniques based on geometric optics. The method is validated through application to the design of three different configurations of linear concentrating collector.
Issue Section:
Research Papers
1.
Rabl
, A.
, 1994, “Edge-Ray Method for Analysis of Radiation Transfer Among Specular Reflectors
,” Appl. Opt.
0003-6935, 33
, pp. 1248
–1259
.2.
Haeberle
, A.
, Berger
, M.
, Luginsland
, F.
, Zahler
, C.
, Baitsch
, M.
, Henning
, H. -M.
, Rommel
, M.
, 2007, “Linear Concentrating Fresnel Collector for Process Heat Applications
,” Proceedings of the Local Renewables
, Freiburg, Germany, Jun. 13–15.3.
2008, OPTICAD: Product Homepage, Viewed 20 April, 2009, http://www.opticad.com/http://www.opticad.com/
4.
Muschaweck
, J.
, Spirkl
, W.
, Timinger
, A.
, Benz
, N.
, Dörfler
, M.
, Gut
, M.
, and Kose
, E.
, 2000, “Optimized Reflectors for Non-Tracking Solar Collectors With Tubular Absorbers
,” Sol. Energy
0038-092X, 68
, pp. 151
–159
.5.
Ashdown
, I.
, 1994, “Non-Imaging Optics Design Using Genetic Algorithms
,” J. IESNA
0099-4480, 23
, pp. 12
–21
.6.
Holland
, J. H.
, 1992, Adaptation in Natural and Artificial Systems
, 2nd ed., MIT
, Cambridge, MA
.7.
Daun
, K.
, Morton
, D. P.
, and Howell
, J. R.
, 2003, “Geometric Optimization of Radiant Enclosures Containing Specular Surfaces
,” ASME J. Heat Transfer
0022-1481, 125
, pp. 845
–851
.8.
Kiefer
, J.
, and Wolfowitz
, J. R.
, 1952, “Stochastic Estimation of the Maximum of a Regression Function
,” Ann. Math. Stat.
0003-4851, 23
, pp. 462
–466
.9.
Bertsekas
, D. P.
, 1999, Nonlinear Programming
, 2nd ed., Athena Scientific
, Belmont, MA
, pp. 723
–728
.10.
Robbins
, H.
, and Monro
, S.
, 1951, “A Stochastic Approximation Method
,” Ann. Math. Stat.
0003-4851, 22
, pp. 400
–407
.11.
Siegel
, R.
, and Howell
, J. R.
, 2002, Thermal Radiation Heat Transfer
, 4th ed., Taylor & Francis
, New York
, Chap. 10.12.
Hammersley
, J. M.
, and Handscomb
, D. C.
, 1975, Monte Carlo Methods
, Fletcher & Son Ltd.
, Norwich, UK
, p. 52
.13.
Kersch
, A.
, Morokoff
, W.
, and Schuster
, A.
, 1994, “Radiative Heat Transfer With Quasi-Monte Carlo Methods
,” Transp. Theory Stat. Phys.
0041-1450, 23
, pp. 1001
–1021
.14.
Kline
, S. J.
, and McClintock
, F. A.
, 1953, “Describing Uncertainties in Single-Sample Experiments
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 75
, pp. 3
–12
.15.
Pflug
, G. C.
, 1996, Optimization of Stochastic Models: The Interface between Simulation and Optimization
, Kluwer
, Boston, MA
, pp. 286
–288
.16.
Dupuis
, P.
, and Simha
, R.
, 1991, “On Sampling-Controlled Stochastic Approximation
,” IEEE Trans. Autom. Control
0018-9286, 36
, pp. 915
–924
.17.
Simha
, R.
, 2003, “An Algorithm for Gradient-Free Simulation Optimization Using Sampling Control
,” Int. J. Model. Simulat.
0228-6203, 23
, pp. 197
–204
.18.
Toth
, D. L.
, 1985, “On Ray Tracing Parametric Surfaces
,” SIGGRAPH ’85 Conference Proceedings
, Vol. 19
, pp. 171
–179
.19.
Belegundu
, A. D.
, and Chandrupatla
, T. R.
, 1999, Optimization Concepts and Applications in Engineering
, 2nd ed., Pearson Education
, Singapore
, pp. 28
–29
.20.
Tesfamichael
, T.
, and Wäckelgård
, E.
, 1999, “Angular Solar Absorptance of Absorbers Used in Solar Thermal Collectors
,” Appl. Opt.
0003-6935, 38
, pp. 4189
–4197
.21.
Adsten
, M.
, Helgesson
, A.
, and Karlsson
, B.
, 2005, “Evaluation of CPC-Collector Designs for Stand-Alone, Roof- or Wall Installation
,” Sol. Energy
0038-092X, 79
, pp. 638
–647
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.