Hexagonal and cubic mesostructured TiO2 anatase were synthesized by a templating sol-gel method using triblock copolymers as structuring agents, and used as photocatalysts for providing geometrical assistance to a photocatalytic reaction. The visible light and UV photocatalytic removal of gas-phase concentrated toluene (110ppm) within an annular flow-reactor was used as a tool to evidence the benefit to use mesostructured photocatalysts. The coupling of low amounts of WO3 with mesostructured anatase led to high efficiency using visible light and UV activation. The highly positive effect of WO3 on the toluene removal efficiency was attributed to the coupling between TiO2 and WO3 semiconductors, leading to an improved photogenerated charge separation and thus a weaker charge recombination. The hypothesis of a confinement effect of the reactants inside the mesostructured photocatalyst was put forward to explain the photocatalytic performances obtained under visible light and UV activation. This confinement effect would be based on the inner partial pressure concept. It consists of an increase in the partial pressure of the reactants next to the active sites inside the nanometric cavities of the ordered structure, while the apparent macroscopic partial pressures, outside the mesostructure, would remain unchanged. According to a traditional reaction rate law, such an increase results in the increase in the reaction rate. The photon-assisted reaction could be considered as “structure-assisted,” the geometrical assistance being provided by the surrounding ordered TiO2 walls of the mesostructure.

1.
Do
,
Y. R.
,
Lee
,
W.
,
Dwight
,
K.
, and
Wold
,
A.
, 1994, “
The Effect of WO3 on the Photocatalytic Activity of TiO2
,”
J. Solid State Chem.
0022-4596,
108
, pp.
198
201
.
2.
Serpone
,
N.
,
Maruthamuthu
,
P.
,
Pichat
,
P.
,
Pelizzetti
,
E.
, and
Hidaka
,
H.
, 1995, “
Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductors
,”
J. Photochem. Photobiol., A
1010-6030,
85
(
3
), pp.
247
255
.
3.
Martin
,
C.
,
Solana
,
G.
,
Rives
,
V.
,
Marci
,
G.
,
Palmisano
,
L.
, and
Sclafani
,
A.
, 1997, “
Physico-Chemical Properties of WO3∕TiO2 Systems Employed for 4-Nitrophenol Photodegradation in Aqueous Medium
,”
Catal. Lett.
1011-372X,
49
(
3–4
), pp.
235
243
.
4.
Di Paola
,
A.
,
Palmisano
,
L.
,
Venezia
,
A. M.
, and
Augugliaro
,
V.
, 1999, “
Coupled Semiconductor Systems for Photocatalysis. Preparation and Characterization of Polycrystalline Mixed WO3∕WS2 Powders
,”
J. Phys. Chem. B
1089-5647,
103
(
39
), pp.
8236
8244
.
5.
Kwon
,
Y. T.
,
Song
,
K. Y.
,
Lee
,
W. I.
,
Choi
,
G. J.
, and
Do
,
Y. R.
, 2000, “
Photocatalytic Behavior of WO3-Loaded TiO2 in an Oxidation Reaction
,”
J. Catal.
0021-9517,
191
(
1
), pp.
192
199
.
6.
Keller
,
V.
, and
Garin
,
F.
, 2003, “
Photocatalytic Oxidation of Butyl Acetate in Vapor Phase on TiO2, Pt∕TiO2 and WO3∕TiO2 Catalysts
,”
J. Catal.
0021-9517,
215
, pp.
129
138
.
7.
Gao
,
B. F.
,
Ma
,
Y.
,
Cao
,
Y.
,
Yang
,
W.
, and
Yao
,
J. N.
, 2006, “
Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling With Tungsten Oxide
,”
J. Phys. Chem. B
1089-5647,
110
(
29
), pp.
14391
14397
.
8.
Shinguu
,
H.
,
Bhuiyan
,
M. M. H.
,
Ikegami
,
T.
, and
Ebihara
,
K.
, 2006, “
Preparation of TiO2∕WO3 Multilayer Thin Film by PLD Method and Its Catalytic Response to Visible Light
,”
Thin Solid Films
0040-6090,
506
, pp.
111
114
.
9.
Kasuga
,
T.
,
Hiralatsu
,
M.
,
Hoson
,
A.
,
Sekino
,
T.
, and
Niihara
,
K.
, 1999, “
Titania Nanotubes Prepared by Chemical Processing
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
11
(
15
), pp.
1307
1311
.
10.
Bartl
,
M. H.
,
Puls
,
S. P.
,
Tang
,
J.
,
Lichtenegger
,
H. C.
, and
Stucky
,
G. D.
, 2004, “
Cubic Mesoporous Frameworks With a Mixed Semiconductor Nanocrystalline Wall Structure and Enhanced Sensitivity to Visible Light
,”
Angew. Chem., Int. Ed.
1433-7851,
43
(
23
), pp.
3037
3040
.
11.
Kresge
,
C. T.
,
Leonowicz
,
M. E.
,
Roth
,
W. J.
,
Vartuli
,
J. C.
, and
Beck
,
J. S.
, 1992, “
Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism
,”
Nature (London)
0028-0836,
359
, pp.
710
712
.
12.
Klotz
,
M.
,
Ayral
,
A.
,
Guizard
,
C.
, and
Cot
,
L.
, 1999, “
Tailoring of the Porosity in Sol-Gel Derived Silica Thin Layers
,”
Bull. Korean Chem. Soc.
0253-2964,
20
(
8
), pp.
879
884
.
13.
Cabrera
,
S.
,
El Haskouri
,
J.
,
Beltran-Porter
,
A.
,
Marcos
,
M. D.
, and
Amoros
,
P.
, 2000, “
Enhanced Surface Area in Thermally Stable Pure Mesoporous TiO2
,”
Solid State Sci.
1293-2558,
2
(
5
), pp.
513
518
.
14.
Yusuf
,
M. M.
,
Imai
,
H.
, and
Hirashima
,
H. J.
, 2002, “
Preparation of Porous Titania Film by Modified Sol-Gel Method and Its Application to Photocatalyst
,”
J. Sol-Gel Sci. Technol.
0928-0707,
25
(
1
), pp.
65
74
.
15.
Hwang
,
Y. K.
,
Lee
,
K. C.
, and
Kwon
,
Y. U.
, 2001, “
Nanoparticle Routes to Mesoporous Titania Thin Films
,”
Chem. Commun. (Cambridge)
1359-7345,
18
, pp.
1738
1739
.
16.
Alberius
,
P. C. A.
,
Frindell
,
K. L.
,
Hayward
,
R. C.
,
Kramer
,
E. J.
,
Stucky
,
G. D.
, and
Schmelka
,
B. F.
, 2002, “
General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films
,”
Chem. Mater.
0897-4756,
14
(
8
), pp.
3284
3294
.
17.
Crepaldi
,
E. L.
,
Soler-Illia
,
G. J. d. A. A.
,
Grosso
,
D.
, and
Sanchez
,
C.
, 2003, “
Nanocrystallised Titania and Zirconia Mesoporous Thin Films Exhibiting Enhanced Thermal Stability
,”
New J. Chem.
1144-0546,
27
(
1
), pp.
9
13
.
18.
Bosc
,
F.
,
Ayral
,
A.
,
Albouy
,
P.-A.
, and
Guizard
,
C.
, 2003, “
A Simple Route for Low-Temperature Synthesis of Mesoporous and Nanocrystalline Anatase Thin Films
,”
Chem. Mater.
0897-4756,
15
(
12
), pp.
2463
2468
.
19.
Bosc
,
F.
, 2004, “
Synthèse et Caractérisation de Couches Minces et de Membranes Photocatalytiques et Mésostructurées à Base de TiO2 Anatase
,” Ph.D. thesis, University of Montpellier, France.
20.
Bosc
,
F.
,
Ayral
,
A.
,
Albouy
,
P.-A.
,
Datas
,
L.
, and
Guizard
,
C.
, 2004, “
Mesostructure of Anatase Thin Films Prepared by Mesophase Templating
,”
Chem. Mater.
0897-4756,
16
(
11
), pp.
2208
2214
.
21.
Bosc
,
F.
,
Ayral
,
A.
,
Keller
,
N.
, and
Keller
,
V.
, 2006, “
Room Temperature Visible Light Oxidation of CO by High Surface Area Rutile TiO2-Supported Metal Photocatalyst
,”
Appl. Catal., B
0926-3373,
69
, pp.
133
137
.
22.
Marci
,
G.
,
Addamo
,
M.
,
Augugliaro
,
V.
,
Coluccia
,
S.
,
Garcia-Lopez
,
E.
,
Loddo
,
V.
,
Marta
,
G.
,
Palmisano
,
L.
, and
Schiavello
,
M.
, 2003, “
Photocatalytic Oxidation of Toluene on Irradiated TiO2: Comparison of Degradation Performance in Humidified Air, in Water and in Water Containing a Zwitterionic Surfactant
,”
J. Photochem. Photobiol., A
1010-6030,
160
(
1–2
), pp.
105
114
.
23.
Bessekhouad
,
Y.
,
Robert
,
D.
, and
Weber
,
J.-V.
, 2005, “
Photocatalytic Activity of Cu2O∕TiO2, Bi2O3∕TiO2 and ZnMn2O4∕TiO2 Heterojunctions
,”
Catal. Today
0920-5861,
101
(
3–4
), pp.
315
21
.
24.
Robert
,
D.
, 2008, “
Photosensitization of TiO2 by MxOy and MxSy Nanoparticles for Heterogeneous Photocatalysis Applications
,”
Catal. Today
0920-5861,
122
(
1–2
), pp.
20
26
.
25.
Nhut
,
J.-M.
,
Viera
,
R.
,
Pesant
,
L.
,
Tessonnier
,
J.-P.
,
Keller
,
N.
,
Ehret
,
G.
,
Pham-Huu
,
C.
, and
Ledoux
,
M. J.
, 2002, “
Synthesis and Catalytic Uses of Carbon and Silicon Nanostructures
,”
Catal. Today
0920-5861,
76
, pp.
11
32
.
You do not currently have access to this content.