Starting from the R&D experience acquired, within the Italian context, in the field of the development of new technologies for solar energy exploitation, structural design criteria have been selected here to define a guideline for steel structures design and assessment of components of parabolic-trough solar concentrators. The main codes of practice used in Italy and in the European community have been considered and design criteria chosen to find a compromise between requirements of rules that should be followed precisely and costs. Loads, actions, and more generally, the whole design procedure has been considered in agreement with the limit state method; a new approach is critically and carefully proposed to use this method in designing and testing “special structures,” such as the one analyzed here (e.g., wind and snow actions are evaluated and newly interpreted according to both the angular position of the collectors and the characteristic effects). A method for evaluating variable loads is proposed to integrate current Italian and European rules, and a dimensional reduction for some elements due to the limit state design approach is underlined.

1.
Rubbia
,
C.
, and ENEA Working Group, 2001, “
Solar Thermal Energy Production: Guidelines and Future Programmes of ENEA
,” ENEA/TM/PRES/2001-7, Rome, Italy.
2.
Sargent & Lundy Consulting Group
, May 2003, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,” NREL SL-5641, Chicago.
3.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
, 2002, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
(
2
), pp.
109
125
.
4.
Lüpfert
,
E.
,
Geyer
,
M.
,
Schiel
,
W.
,
Esteban
,
A.
,
Osuna
,
R.
,
Zarza
,
E.
, and
Nava
,
P.
, 2001, “
EUROTROUGH Design Issues and Prototype Testing At PSA
,”
Proc. of ASME Int. Solar Energy Conference—Forum 2001, Solar Energy: The Power to Choose
, Washington, DC, April 21–25,
ASME
, New York, pp.
389
394
.
6.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
, 2004, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
0360-5442,
29
(
5-6
), pp.
883
893
.
7.
Antonaia
,
A.
,
Avitabile
,
M.
,
Calchetti
,
G.
,
Crescenzi
,
T.
,
Cara
,
G.
,
Giannuzzi
,
G. M.
,
Maccari
,
A.
,
Miliozzi
,
A.
,
Rufoloni
,
M.
,
Prischich
,
D.
, and
Vignolini
,
M.
, 2001, “
Progetto di massima del collettore parabolico lineare per impianto solare
,” ENEA/TM/PRES/2001-09, Rome (in Italian).
8.
Majorana
,
C.
, and
Salomoni
,
V.
, 2004, “
Selezione, elaborazione ed applicazione delle norme per la progettazione dei concentratori parabolici lineari. Descrizione funzionale, classificazione e selezione delle norme di progetto delle strutture del concentratore solare parabolico lineare
,” Report ENEA-TRASTEC, Rome-Padua (in Italian).
9.
Miliozzi
,
A.
,
Nicolini
,
D.
,
Giannuzzi
,
G. M.
,
Rondoni
,
C.
,
Chieruzzi
,
M.
, and
Kenny
,
J. M.
, 2004, “
Valutazione numerica dell’azione del vento sui concentratori parabolici lineari di un impianto solare ad alta temperatura
,” Enea Report SOL/RD/2004/13 (in Italian).
10.
Majorana
,
C.
, and
Salomoni
,
V.
, 2005, “
Guida alla progettazione dei collettori solari parabolici lineari
,” Report ENEA-TRASTEC, Rome-Padua (in Italian).
11.
Majorana
,
C.
, and
Salomoni
,
V.
, 2005, “
Analisi e verifiche strutturali per un concentratore solare parabolico lineare da 100 metri
,” Report ENEA-TRASTEC, Rome-Padua (in Italian).
You do not currently have access to this content.