In this work the uncertainty of wind power predictions is investigated with a special focus on the important role of the nonlinear power curve. Based on numerical predictions and measured data from six onshore wind farms the overall prediction accuracy is assessed and it is shown that due to the power curve the relative forecast error increases by a factor of 1.8–2.6 compared to the wind speed forecast. This factor can be considered as an effective nonlinearity factor. A decomposition of the commonly known root mean square error is beneficially used to distinguish different error sources related to either on-site conditions or global properties of the numerical weather prediction system. The statistical distribution of the wind speed prediction error is found to be Gaussian in contrast to the the one of power prediction error. Using the power curve and conditional probability density functions of the wind speed the unsymmetric distribution of the power prediction error can be explained and modeled such that it can be estimated even if no measurement data is available.

1.
Morthorst
,
P. E.
,
2003
, “
Wind Power and the Conditions at a Liberalized Power Market
,”
Wind Eng.
,
6
, pp.
297
308
.
2.
Holttinen, H., Nielsen, T. S., and Giebel, G., 2002, “Wind Energy in the Liberalized Market—Forecast Errors in Day-ahead Market compared to a more flexible Market Mechanism,” Proc. IEA Joint Action Symposium on Wind Forecasting Techniques, Norrko¨pping, pp. 171–182.
3.
Palmer
,
T. N.
,
2000
, “
Predicting Uncertainty in Forecasts of Weather and Climate
,”
Rep. Prog. Phys.
,
63
, pp.
71
116
.
4.
Landberg
,
L.
,
1999
, “
Short-Term Prediction of the Power Production from Wind Farms
,”
J. Wind. Eng. Ind. Aerodyn.
,
80
, p.
207
207
.
5.
Nielsen, T. S., Madsen, H., and Tøfting, J., 1999, “Experiences with Statistical Methods for Wind Power Prediction,” in Proceedings of the European Wind Energy Conference EWEC, Nice, pp. 1066–1069.
6.
Ernst, B., Rohrig, K., Schorn, P., and Regber, H., 2001, “Managing 3000 MWWind Power in a Transmission System Operation Center,” in Proceedings of the European Wind Energy Conference EWEC, Copenhagen, p. 890.
7.
Focken, U., Lange, M., and Waldl, H.-P., 2002, “Previento—Regional Wind Power Prediction with Risk Control,” Proc. Global Wind Power Conference, Paris.
8.
Focken, U., and Heinemann, D., 2003, “Influence of Thermal Stratification on Wind Profiles for Heights up s to 130 m,” Proc. European Wind Energy Conference EWEC, Madrid.
9.
Focken
,
U.
,
Lange
,
M.
,
Mo¨nnich
,
K.
,
Waldl
,
H.-P
,
Beyer
,
H. G.
, and
Luig
,
A.
, “
Short-term Prediction of the Aggregated Power Output of Wind Farms—a Statistical Analysis of the Reduction of the Prediction Error by Spatial Smoothing Effects
,”
J. Wind. Eng. Ind. Aerodyn.
,
90
, pp.
231
246
.
10.
Focken U., Lange M., and Waldl, H.-P., 2001, “Previento—a Wind Power Prediction System with Innovative Upscaling Algorithm,” in Proceedings of the European Wind Energy Conference EWEC, Copenhagen, p. 826.
11.
Focken, U., 2003, Leistungsvorhersage Ra¨umlich Verteilter Windkraftanlagen unter Besonderer Beru¨cksichtigung der Thermischen Schichtung der Atmospha¨re, Fortschritt-Berichte VDI Reihe 6 No. 503, VDI Verlag, Du¨sseldorf.
12.
Tambke, J., Lange, M., Focken, U., and Heinemann, D., 2003, “Previento meets Horns Rev—Short-term Wind Power Predictions—Adaptation to Offshore Sites,” in Proceedings of the European Wind Energy Conference EWEC, Madrid.
13.
Lange, B., 2003, Modelling the Marine Boundary Layer for Offshore Wind Power Utilisation, Fortschritt-Berichte VDI Reihe 6 No. 491, VDI Verlag, Du¨sseldorf.
14.
Hou
,
D.
,
Kalnay
,
E.
, and
Droegemeier
,
K. K.
,
2001
, “
Objective Verification of the SAMEX ’98 Ensemble Forecast
,”
Mon. Weather Rev.
,
129
, pp.
73
91
.
15.
Takacs
,
L.
,
1985
, “
A Two-Step Scheme for the Advection Equation with Minimized Dissipation and Dispersion Errors
,”
Mon. Weather Rev.
,
113
, pp.
1050
1065
.
16.
Mo¨nnich, K., 2000, “Vorhersage der Leistungsabgabe netzeinspeisender Windkraftanlagen zur Unterstu¨tzung der Kraftwerkseinsatzplanung,” Ph.D. thesis, University of Oldenburg, Oldenburg.
17.
Landberg, L., 1994, “Short-term Prediction of Local Wind Conditions,” Technical Report No. Risø-R-702(EN), Risø National Laboratory, Risø.
18.
Giebel, G., 2001, On the Benefits of Distributed Generation of Wind Energy in Europe, Fortschritt-Berichte VDI Reihe 6 No. 444, VDI Verlag, Du¨sseldorf.
19.
Lange, M., 2003, “Analysis of the Uncertainty of Wind Power Predictions,” Ph.D. thesis, University of Oldenburg, Oldenburg, http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2003/lanana03/lanana03.html.
20.
Pinson, P., and Kariniotakis, G., 2003, “On-line Assessment of Prediction Risk for Wind Power Production Forecasts,” in Proceedings of the European Wind Energy Conference EWEC, Madrid.
21.
Luig, A., Bofinger, S., and Beyer, H. G., 2001, “Analysis of Confidence Intervals for the Prediction of the Regional Wind Power Output,” in Proceedings of the European Wind Energy Conference EWEC, Copenhagen, pp. 725–728.
22.
Lange, M., and Heinemann, D., 2003, “Relating the Uncertainty of Short-term Wind Speed Predictions to Meteorological Situations with Methods from Synoptic Climatology,” in Proceedings of the European Wind Energy Conference, EWEC, Madrid.
You do not currently have access to this content.