A novel solar process and reactor for thermochemical conversion of biomass to synthesis gas is described. The concept is based on dispersion of biomass particles in a molten inorganic salt medium and, simultaneously, absorbing, storing and transferring solar energy needed to perform pyrolysis reactions in the high-temperature liquid phase. A lab-scale reactor filled with carbonates of potassium and sodium was set up to study the kinetics of fast pyrolysis and the characteristics of transient heat transfer for cellulose particles (few millimeters size) introduced into the molten salt medium. The operating conditions were reaction temperatures of 1073–1188 K and a particle peak-heating rate of 100 K/sec. The assessments performed for a commercial-scale solar reactor demonstrate that pyrolysis of biomass particles dispersed in a molten salt phase could be a feasible option for the continuous, round-the-clock production of syngas, using solar energy only.

1.
Le´de´
,
J.
,
1999
, “
Solar Thermochemical Conversion of Biomass
,”
Sol. Energy
,
65
(
1
), pp.
3
13
.
2.
Caubet
,
S.
,
Corte
,
P.
,
Fahim
,
C.
, and
Traverse
,
J. P.
,
1982
, “
Thermochemical Conversion of Biomass: Gasification by Flash Pyrolysis Study
,”
Sol. Energy
,
29
, No.
6
, pp.
565
572
.
3.
Epstein, M., Spiewak, I., Funken, K.-H., and Ortner, J., 1994, “Review of the Technologies for Solar Gasification of Carbonaceous Materials,” Proc., of ASME Int. Solar Energy Conf. on Solar Engineering, San Francisco, CA, USA, pp. 79–91.
4.
Spiewak, I., 1993, “Cost Targets for the Solar Gasification of Carbonaceous Materials,” Proc. of 6th Int. Symp. on Solar Concentrating Technologies, Moja´car, Spain, pp. 1013–1026.
5.
Bridgwater
,
A. V.
,
2003
, “
Renewable Fuels and Chemicals by Thermal Processing of Biomass
,”
Chem. Eng. J.
,
91
, pp.
87
102
.
6.
Maniatis, K., 2001, “Progress in Biomass Gasification: An Overview,” Progress in Thermochemical Biomass Conversion, A. V. Bridgwater (ed.), MPG Books Ltd., Bodmin, Cornwall, UK, 1, pp. 1–31.
7.
Adinberg, R., and Epstein, M., 1996, “Development of Solar Coal Gasification Technology,” Proc. of ASME Int. Solar Energy Conf. on Solar Engineering, San Antonio, TX, USA, pp. 307–314.
8.
Wo¨rner
,
A.
, and
Tamme
,
R.
,
1998
, “
CO2 Reforming of Methane in a Solar-Driven Volumetric Receiver-Reactor
,”
Catal. Today
,
46
(
2–3
), pp.
165
174
.
9.
Bo¨hmer, M., and Becker, M., 1992, “High-Temperature Receiver Technology,” Solar Power and Chemical Energy Systems, IEA-SSPS/SolarPACES Program, DLR-PSA, Almerı´a, Spain, pp. 55–74.
10.
Di Blasi
,
C.
,
2000
, “
Modelling the Fast Pyrolysis of Cellulosic Particles in Fluid-Bed Reactors
,”
Chem. Eng. Sci.
,
55
, pp.
5999
6013
.
11.
Matsunami
,
J.
,
Yoshida
,
S.
,
Oku
,
Y.
,
Yokata
,
O.
,
Tamaura
,
Y.
, and
Kitamura
,
M.
,
2000
, “
Coal Gasification by CO2 Gas Bubbling in Molten Salt for Solar/Fossil Energy Hybridization
,”
Sol. Energy
,
68
(
3
), pp.
257
261
.
12.
Yoshida
,
S.
,
Matsunami
,
J.
,
Hosokawa
,
Y.
,
Yokota
,
O.
, and
Tamaura
,
Y.
,
1999
, “
Coal/CO2 Gasification System Using Molten Carbonate Salt for Solar/Fossil Energy Hybridization
,”
Energy Fuels
,
13
, pp.
961
964
.
13.
Kodama
,
T.
,
Koyanagi
,
T.
,
Shimuzu
,
T.
, and
Kitayama
,
Y.
,
2001
, “
CO2 Reforming of Methane in Molten Carbonate Salt Bath for Use in Solar Thermochemical Processes
,”
Energy Fuels
,
15
, pp.
60
65
.
14.
Kudsy
,
M.
, and
Kumazawa
,
H.
,
1999
, “
Pyrolysis of Kraft Lignin in the Presence of Molten ZnCl2-KCl Mixture
,”
The Canadian Journal of Chemical Engineering
,
77
, pp.
1176
1184
.
15.
Hsu
,
P. C.
,
Foster
,
K. G.
,
Ford
,
T. D.
,
Wallman
,
P. H.
,
Watkins
,
B. E.
,
Pruneda
,
C. O.
, and
Adamson
,
M. G.
,
2000
, “
Treatment of Solid Wastes with Molten Salt Oxidation
,”
Waste Mgt.
,
20
, pp.
363
368
.
16.
Bramlette, T. T., Green, R. M., Bartel, J. J., Ottesen, D. K., Schafer, C. T., and Brumleve, T. D., 1976, “Survey of High-Temperature Thermal Storage,” SAND75-8063, Sandia National Laboratories, Albuquerque, NM, USA.
17.
Lai, G. Y., 1997, High-Temperature Corrosion of Engineering Alloys, ASM International, US.
18.
Demirbas¸
,
A.
,
2002
, “
Gaseous Products from Biomass by Pyrolysis and Gasification: Effects of Catalyst on Hydrogen Yield
,”
Energy Convers. Manage.
,
43
, pp.
897
909
.
19.
Weast, R. C. (ed.), 1990, CRC Handbook of Chemistry and Physics, 70th edn., CRC Press, Inc., Boca Raton, FL, USA.
20.
Antal
,
M. J.
, and
Varhegyi
,
G.
,
1995
, “
Cellulose Pyrolysis Kinetics: The Current State of Knowledge
,”
Ind. Eng. Chem. Res.
,
34
, pp.
703
717
.
21.
Antal
,
M. J.
,
Varhegyi
,
G.
, and
Jakab
,
E.
,
1998
, “
Cellulose Pyrolysis Kinetics: Revisited
,”
Ind. Eng. Chem. Res.
,
37
, pp.
1267
1275
.
22.
Bradbury
,
A. G. W.
,
Sakai
,
Y.
, and
Shafizadeh
,
F.
,
1979
, “
A Kinetic Model for Pyrolysis of Cellulose
,”
J. Appl. Polym. Sci.
,
23
, pp.
3271
3280
.
23.
Le´de´
,
J.
,
Blanchard
,
F.
, and
Boutin
,
O.
,
2002
, “
Radiant Flash Pyrolysis of Cellulose Pellets: Products and Mechanisms Involved in Transient and Steady State Conditions
,”
Fuel
,
81
, pp.
1269
1279
.
24.
Boutin
,
O.
,
Ferrer
,
M.
, and
Le´de´
,
J.
,
2002
, “
Flash Pyrolysis of Cellulose Pellets Submitted to Concentrated Radiation: Experiments and Modelling
,”
Chem. Eng. Sci.
,
57
, pp.
15
25
.
25.
Volker
,
S.
, and
Rieckmann
,
T.
,
2002
, “
Thermokinetic Investigation of Cellulose Pyrolysis: Impact of Initial and Final Mass on Kinetic Results
,”
J. Anal. Appl. Pyrolysis
,
62
, pp.
165
177
.
26.
Brown
,
A. L.
,
Dayton
,
D. C.
, and
Daily
,
J. W.
,
2001
, “
Study of Cellulose Pyrolysis Chemistry and Global Kinetics at High Heating Rates
,”
Energy Fuels
,
15
, pp.
1286
1294
.
27.
Di Blasi
,
C.
,
1996
, “
Kinetics and Heat Transfer Control in the Slow and Flash Pyrolysis
,”
Ind. Eng. Chem. Res.
,
35
, pp.
37
46
.
28.
Milosavljevic
,
I.
, and
Suuberg
,
E. M.
,
1995
, “
Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics
,”
Ind. Eng. Chem. Res.
,
34
, pp.
1081
1091
.
29.
ECN, 1998, Phyllis, Database for Biomass and Waste, Energy Research Center of the Netherlands, http://www.ecn.nl/phyllis.
30.
Chornet
,
E.
, and
Roy
,
C.
,
1980
, “
Compensation Effect in the Thermal Decomposition of Cellulosic Materials
,”
Thermochemical Acta
,
35
, pp.
389
393
.
31.
Hajaligol
,
M. R.
,
Howard
,
J. B.
,
Longwell
,
J. P.
, and
Peters
,
W. A.
,
1982
, “
Product Compositions and Kinetics for Rapid Pyrolysis of Cellulose
,”
I&EC Process Des. Dev.
,
21
, pp.
457
465
.
32.
Ferdous
,
D.
,
Dalai
,
A. K.
,
Bej
,
S. K.
, and
Thring
,
R. W.
,
2002
, “
Pyrolysis of Lignins: Experimental and Kinetics Studies
,”
Energy Fuels
,
16
, pp.
1405
1412
.
33.
Eckert, E. R. G., and Diaguila, A. J., 1955, “Experimental Investigation of Free-Convection Heat Transfer in Vertical Tube at Large Grashof Numbers,” NACA Report 1211.
34.
Segal
,
A.
, and
Epstein
,
M.
,
2000
, “
The Optics of the Solar Tower Reflector
,”
Sol. Energy
,
69
, (Suppl.,
1–6
), pp.
229
241
.
35.
Epstein, M., Segal, A., and Yogev, A., 1999, “A Molten Salt System with a Ground Base-Integrated Solar Receiver Storage Tank,” Proc. of 9th SolarPACES Int. Symp. on Solar Thermal Concentrating Technologies, Font-Romeu, France, J. Phys. IV, 9(Pr3), pp. 95–104.
You do not currently have access to this content.