Abstract

Engineering decisions that have the greatest effect on worker and public safety occur early in the design process. During these decisions, engineers rely on their experience and intuition to estimate the severity and likelihood of undesired future events like failures, equipment damage, injuries, or environmental harm. These initial estimates can then form the basis of investment of limited project resources in mitigating those risks. Behavioral economics suggests that most people make significant and predictable errors when considering high consequence, low probability events. Yet, these biases have not previously been studied quantitatively in the context of engineering decisions. This paper describes results from a set of computer-based engineering assessment and decision experiments with undergraduate engineering students estimating, prioritizing, and making design decisions related to risk. The subjects included in this experiment overestimated the probability of failure, deviated significantly from anticipated risk management preferences, and displayed worsening biases with increasing system complexity. These preliminary results suggest that considerably more effort is needed to understand the characteristics and qualities of these biases in risk estimation and understand what kinds of interventions might best ameliorate these biases and enable engineers to more effectively identify and manage the risks of technology.

References

1.
Gernand
,
J. M.
,
2018
, “
A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks
,”
ASME
Paper No. IMECE2018-87888
.10.1115/IMECE2018-87888
2.
Ashford
,
N. A.
,
2004
, “
Major Challenges to Engineering Education for Sustainable Development
,”
Int. J. Sustainability Higher Educ.
,
5
(
3
), pp.
239
250
.10.1108/14676370410546394
3.
Herkert
,
J. R.
,
2000
, “
Engineering Ethics Education in the USA: Content, Pedagogy and Curriculum
,”
Eur. J. Eng. Educ.
,
25
(
4
), pp.
303
313
.10.1080/03043790050200340
4.
Ishii
,
K.
,
Weck
,
O.
,
de Haruyama
,
S.
,
Maeno
,
T.
,
Kim
,
S.
, and
Fowler
,
W.
,
2009
, “
Active Learning Project Sequence: Capstone Experience for Multi- Disciplinary System Design and Management Education
,”
DS 58–10: Proceedings of ICED 09, the 17th International Conference on Engineering Design
, Vol.
10
, Design Education and Lifelong Learning, Palo Alto, CA, USA, July 24–27, pp.
57
68
.
5.
Meyer
,
T.
, and
Reniers
,
G.
,
2016
,
Engineering Risk Management
,
De Gruyter Textbook, De Gruyter
,
Berling, Germany
.
6.
Carlson
,
C. S.
,
2012
,
Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Modes and Effects Analysis
,
Wiley
,
Hoboken, NJ
.
7.
Apostolakis
,
G. E.
,
2004
, “
How Useful is Quantitative Risk Assessment?
,”
Risk Anal.
,
24
(
3
), pp.
515
520
.10.1111/j.0272-4332.2004.00455.x
8.
Mosleh
,
A.
,
Bier
,
V. M.
, and
Apostolakis
,
G.
,
1988
, “
A Critique of Current Practice for the Use of Expert Opinions in Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
20
(
1
), pp.
63
85
.10.1016/0951-8320(88)90006-3
9.
Bendell
,
T.
,
1988
, “
An Overview of Collection, Analysis, and Application of Reliability Data in the Process Industries
,”
IEEE Trans. Reliab.
,
37
(
2
), pp.
132
137
.10.1109/24.3732
10.
Kumar
,
S.
, and
Hsiao
,
J. K.
,
2007
, “
Engineers Learn ‘Soft Skills the Hard Way’: Planting a Seed of Leadership in Engineering Classes
,”
Leadership Manage. Eng.
,
7
(
1
), pp.
18
23
.10.1061/(ASCE)1532-6748(2007)7:1(18)
11.
Saleh
,
J. H.
, and
Pendley
,
C. C.
,
2012
, “
From Learning From Accidents to Teaching About Accident Causation and Prevention: Multidisciplinary Education and Safety Literacy for All Engineering Students
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
105
113
.10.1016/j.ress.2011.10.016
12.
Wiener
,
J. L.
,
1985
, “
Are Warranties Accurate Signals of Product Reliability?
,”
J. Consum. Res.
,
12
(
2
), p.
245
.10.1086/208513
13.
Bailer
,
A. J.
,
Stayner
,
L. T.
,
Stout
,
N. A.
,
Reed
,
L. D.
, and
Gilbert
,
S. J.
,
1998
, “
Trends in Rates of Occupational Fatal Injuries in the United States (1983–92)
,”
Occup. Environ. Med.
,
55
(
7
), pp.
485
9
.10.1136/oem.55.7.485
14.
Friedman
,
L. S.
, and
Forst
,
L.
,
2007
, “
The Impact of OSHA Recordkeeping Regulation Changes on Occupational Injury and Illness Trends in the US: A Time-Series Analysis
,”
Occup. Environ. Med.
,
64
(
7
), pp.
454
60
.10.1136/oem.2006.029322
15.
Rowan
,
K. E.
,
1994
, “
Why Rules for Risk Communication Are Not Enough: A Problem-Solving Approach to Risk Communication
,”
Risk Anal.
,
14
(
3
), pp.
365
374
.10.1111/j.1539-6924.1994.tb00253.x
16.
SIMARD
,
M.
, and
MARCHAND
,
A.
,
1997
, “
Workgroups' Propensity to Comply With Safety Rules: The Influence of Micro-Macro Organisational Factors
,”
Ergonomics
,
40
(
2
), pp.
172
188
.10.1080/001401397188288
17.
Leveson
,
N.
,
Dulac
,
N.
,
Marais
,
K.
, and
Carroll
,
J.
,
2009
, “
Moving Beyond Normal Accidents and High Reliability Organizations: A Systems Approach to Safety in Complex Systems
,”
Organ. Stud.
,
30
(
2–3
), pp.
227
249
.10.1177/0170840608101478
18.
Vallero
,
D. A.
, and
Letcher
,
T. M.
,
2012
, “
Engineering Risks and Failures: Lessons Learned From Environmental Disasters
,”
Leadership Manage. Eng.
,
12
(
4
), pp.
199
209
.10.1061/(ASCE)LM.1943-5630.0000199
19.
Bell
,
T. E.
, and
Esch
,
K.
,
2016
, “
The Challenger Disaster: A Case of Subjective Engineering - IEEE Spectrum
,” IEEE Spec (Online), accessed Aug. 7, 2018, https://spectrum.ieee.org/tech-history/heroic-failures/the-space-shuttle-a-case-of-subjective-engineering
20.
Lu
,
Y.
,
2015
, “
Is Experiential-Intuitive Cognitive Style More Inclined to Err on Conjunction Fallacy Than Analytical-Rational Cognitive Style?
,”
Front. Psychol.
,
6
, p.
85
.10.3389/fpsyg.2015.00085
21.
Nakamura
,
H.
, and
Kawaguchi
,
J.
,
2016
, “
People Like Logical Truth: Testing the Intuitive Detection of Logical Value in Basic Propositions
,”
PLoS One
,
11
(
12
), p.
e0169166
.10.1371/journal.pone.0169166
22.
Slovic
,
P.
,
Fischhoff
,
B.
, and
Lichtenstein
,
S.
,
1979
, “
Rating the Risks
,”
Environment
,
21
(
3
), pp.
14
20
.10.1080/00139157.1979.9933091
23.
Ruan
,
X.
,
Yin
,
Z.
, and
Frangopol
,
D. M.
,
2015
, “
Risk Matrix Integrating Risk Attitudes Based on Utility Theory
,”
Risk Anal.
,
35
(
8
), pp.
1437
1447
.10.1111/risa.12400
24.
Faber
,
M. H.
, and
Stewart
,
M. G.
,
2003
, “
Risk Assessment for Civil Engineering Facilities: Critical Overview and Discussion
,”
Reliab. Eng. Syst. Saf.
,
80
(
2
), pp.
173
184
.10.1016/S0951-8320(03)00027-9
25.
Smith
,
E. D.
,
Siefert
,
W. T.
, and
Drain
,
D.
,
2009
, “
Risk Matrix Input Data Biases
,”
Syst. Eng.
,
12
(
4
), pp.
344
360
.10.1002/sys.20126
26.
Bansal
,
S.
,
Gutierrez
,
G. J.
, and
Keiser
,
J. R.
,
2017
, “
Using Experts' Noisy Quantile Judgments to Quantify Risks: Theory and Application to Agribusiness
,”
Oper. Res.
,
65
(
5
), pp.
1115
1130
.10.1287/opre.2017.1627
27.
Bansal
,
S.
,
Gutierrez
,
G. J.
, and
Keiser
,
J. R.
,
2016
, “
Quantifying Uncertainties and Risks Using Managerial Judgments in a Dynamic New Product Development Environment
,”
Prod. Oper. Manage.
,
25
(
12
), pp.
2010
2013
.10.1111/poms.3_12637
28.
Harris
,
A. J. L.
,
Corner
,
A.
, and
Hahn
,
U.
,
2009
, “
Estimating the Probability of Negative Events
,”
Cognition
,
110
(
1
), pp.
51
64
.10.1016/j.cognition.2008.10.006
29.
Slovic
,
P.
, and
Peters
,
E.
,
2006
, “
Risk Perception and Affect
,”
Curr. Dir. Psychol. Sci.
,
15
(
6
), pp.
322
325
.10.1111/j.1467-8721.2006.00461.x
30.
Slovic
,
P.
,
Fischhoff
,
B.
, and
Lichtenstein
,
S.
,
1985
, “
Characterizing Perceived Risk
,” Perilous Progress: Managing the Hazards of Technology, R. W. Kates, C. Hohenemser, and J. X. Kasperson, eds., Westview, pp.
91
125
.
31.
Tversky
,
A.
, and
Koehler
,
D. J.
,
1994
, “
Support Theory: A Nonextensional Representation of Subjective Probability
,”
Psychol. Rev.
,
101
(
4
), pp.
547
567
.10.1037/0033-295X.101.4.547
32.
Barron
,
G.
, and
Yechiam
,
E.
,
2009
, “
The Coexistence of Overestimation and Underweighting of Rare Events and the Contingent Recency Effect
,”
Judgment Decis. Making
,
4
(
6
), pp.
447
460
.https://journal.sjdm.org/9729b/jdm9729b.pdf
33.
Duijm
,
N. J.
,
2015
, “
Recommendations on the Use and Design of Risk Matrices
,”
Saf. Sci.
,
76
, pp.
21
31
.10.1016/j.ssci.2015.02.014
34.
Gneezy
,
U.
,
1996
, “
Probability Judgments in Multi-Stage Problems: Experimental Evidence of Systematic Biases
,”
Acta Psychol. (Amst).
,
93
(
1–3
), pp.
59
68
.10.1016/0001-6918(96)00020-0
35.
Bar-Hillel
,
M.
,
1973
, “
On the Subjective Probability of Compound Events
,”
Organ. Behav. Hum. Perform.
,
9
(
3
), pp.
396
406
.10.1016/0030-5073(73)90061-5
36.
Frank
,
R.
,
2008
, “
Lessons From Behavioral Economics
,”
Challenge
,
51
(
3
), pp.
80
92
.10.2753/0577-5132510305
37.
Lichtenstein
,
S.
,
Fischhoff
,
B.
, and
Phillips
,
L. D.
,
1982
, “
Calibration of Probabilities: The State of the Art to 1980
,”
Kahneman
,
D.
,
Slovic
,
P.
, and
Tversky
,
A.
, eds.,
Judgment Under Uncertainty: Heuristics and Biases
,
Cambridge University Press
,
Cambridge, UK
, pp.
306
334
.
38.
Kahneman
,
D.
,
2003
, “
Maps of Bounded Rationality: Psychology for Behavioral Economics
,”
Am. Econ. Rev.
,
93
(
5
), pp.
1449
1475
.10.1257/000282803322655392
You do not currently have access to this content.