Abstract

Wind power generation, as a paragon of clean energy, places great importance on the reliability of its equipment. Bearings, in particular, as the core components of wind turbines, have a direct correlation with the stable operation and economic benefits of the entire system. Against this backdrop, addressing the core challenges in the field of bearing fault diagnosis, an innovative fault diagnosis method has been proposed. For the first time, the Swin Transformer deep learning model is combined with acoustic emission (AE) technology, and through advanced signal processing techniques, bearing signals are transformed into filter banks (FBank) feature inputs for the model, effectively achieving precise fault detection in low-speed, heavy-load bearings. With extensive validation on laboratory data of low-speed, heavy-load bearings and the Case Western Reserve University (CWRU) bearing dataset, this method has achieved significant results in identifying four main damage categories. In-depth comparative analysis shows that (1) the improved Swin Transformer achieved an accuracy of 98.6% on the acoustic emission signal laboratory dataset, performing well under data imbalance conditions. (2) It achieved an accuracy of 95.63% on the vibration signal CWRU dataset, demonstrating good generalization capabilities.

References

1.
Lasi
,
H.
,
Fettke
,
P.
,
Kemper
,
H.-G.
,
Feld
,
T.
, and
Hoffmann
,
M.
,
2014
, “
Industry 4.0
,”
Bus. Inf. Syst. Eng.
,
6
(
4
), pp.
239
242
.10.1007/s12599-014-0334-4
2.
Zhang
,
S.
,
Zhang
,
S.
,
Wang
,
B.
, and
Habetler
,
T. G.
,
2020
, “
Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review
,”
IEEE Access
,
8
, pp.
29857
29881
.10.1109/ACCESS.2020.2972859
3.
Lei
,
Y.
,
Lin
,
J.
,
He
,
Z.
, and
Zuo
,
M. J.
,
2013
, “
A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
35
(
1–2
), pp.
108
126
.10.1016/j.ymssp.2012.09.015
4.
Brusa
,
E.
,
2020
, “
Design of a Kinematic Vibration Energy Harvester for a Smart Bearing With Piezoelectric/Magnetic Coupling
,”
Mech. Adv. Mater. Struct.
,
27
(
15
), pp.
1322
1330
.10.1080/15376494.2018.1508795
5.
Garcia-Calva
,
T.
,
Morinigo-Sotelo
,
D.
,
Fernandez-Cavero
,
V.
, and
Romero-Troncoso
,
R.
,
2022
, “
Early Detection of Faults in Induction Motors—A Review
,”
Energies
,
15
(
21
), p.
7855
.10.3390/en15217855
6.
Al-Ghamd
,
A. M.
, and
Mba
,
D.
,
2006
, “
A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1537
1571
.10.1016/j.ymssp.2004.10.013
7.
AlShorman
,
O.
,
Alkahatni
,
F.
,
Masadeh
,
M.
,
Irfan
,
M.
,
Glowacz
,
A.
,
Althobiani
,
F.
,
Kozik
,
J.
, and
Glowacz
,
W.
,
2021
, “
Sounds and Acoustic Emission-Based Early Fault Diagnosis of Induction Motor: A Review Study
,”
Adv. Mech. Eng.
,
13
(
2
), p.
168781402199691
.10.1177/1687814021996915
8.
Ali
,
Y. H.
,
Rahman
,
R.
, and
Hamzah
,
R. I. R.
,
2014
, “
Acoustic Emission Signal Analysis and Artificial Intelligence Techniques in Machine Condition Monitoring and Fault Diagnosis: A Review
,”
J. Teknol.
,
69
(
2
), pp.
121
126
.10.11113/jt.v69.3121
9.
Wu
,
G.
,
Yan
,
T.
,
Yang
,
G.
,
Chai
,
H.
, and
Cao
,
C.
,
2022
, “
A Review on Rolling Bearing Fault Signal Detection Methods Based on Different Sensors
,”
Sensors
,
22
(
21
), p.
8330
.10.3390/s22218330
10.
Kim
,
J.
, and
Kim
,
J.-M.
,
2020
, “
Bearing Fault Diagnosis Using Grad-CAM and Acoustic Emission Signals
,”
Appl. Sci.
,
10
(
6
), p.
2050
.10.3390/app10062050
11.
Dong
,
Z.
,
Zhao
,
D.
, and
Cui
,
L.
,
2024
, “
An Intelligent Bearing Fault Diagnosis Framework: One-Dimensional Improved Self-Attention-Enhanced CNN and Empirical Wavelet Transform
,”
Nonlinear Dyn.
, 112, pp.
1
21
.10.1007/s11071-024-09389-y
12.
Zhang
,
J.
,
Guo
,
J.
,
Geng
,
B.
,
Song
,
H.
,
Zhang
,
Y.
, and
Zhao
,
R.
,
2024
, “
Research on Gearbox Bearing Fault Diagnosis Based on SSA-VMD-CNN Algorithms
,”
epub
.10.21203/rs.3.rs-4137819/v1
13.
Zhang
,
Q.
,
Wei
,
X.
,
Wang
,
Y.
, and
Hou
,
C.
,
2024
, “
Convolutional Neural Network With Attention Mechanism and Visual Vibration Signal Analysis for Bearing Fault Diagnosis
,”
Sensors
,
24
(
6
), p.
1831
.10.3390/s24061831
14.
Dou
,
Q.
,
Chen
,
H.
,
Yu
,
L.
,
Qin
,
J.
, and
Heng
,
P.-A.
,
2017
, “
Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection
,”
IEEE Trans. Biomed. Eng.
,
64
(
7
), pp.
1558
1567
.10.1109/TBME.2016.2613502
15.
Yuan
,
X.
,
Xie
,
L.
, and
Abouelenien
,
M.
,
2018
, “
A Regularized Ensemble Framework of Deep Learning for Cancer Detection From Multi-Class, Imbalanced Training Data
,”
Pattern Recognit.
,
77
, pp.
160
172
.10.1016/j.patcog.2017.12.017
16.
Zhang
,
W.
,
Li
,
C.
,
Peng
,
G.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2018
, “
A Deep Convolutional Neural Network With New Training Methods for Bearing Fault Diagnosis Under Noisy Environment and Different Working Load
,”
Mech. Syst. Signal Process.
,
100
, pp.
439
453
.10.1016/j.ymssp.2017.06.022
17.
Liu
,
Z.
,
Lin
,
Y.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y.
,
Zhang
,
Z.
,
Lin
,
S.
, and
Guo
,
B.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
IEEE/CVF International Conference on Computer Vision
, Montreal, QC, Canada, Oct. 10–17, pp.
10012
10022
.10.1109/ICCV48922.2021.00986
18.
Jia
,
F.
,
Lei
,
Y.
,
Lu
,
N.
, and
Xing
,
S.
,
2018
, “
Deep Normalized Convolutional Neural Network for Imbalanced Fault Classification of Machinery and Its Understanding Via Visualization
,”
Mech. Syst. Signal Process.
,
110
, pp.
349
367
.10.1016/j.ymssp.2018.03.025
19.
Wu
,
Z.
,
Guo
,
Y.
,
Lin
,
W.
,
Yu
,
S.
, and
Ji
,
Y.
,
2018
, “
A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems
,”
Sensors
,
18
(
4
), p.
1096
.10.3390/s18041096
20.
Santos
,
P.
,
Maudes
,
J.
, and
Bustillo
,
A.
,
2018
, “
Identifying Maximum Imbalance in Datasets for Fault Diagnosis of Gearboxes
,”
J. Intell. Manuf.
,
29
(
2
), pp.
333
351
.10.1007/s10845-015-1110-0
21.
Buda
,
M.
,
Maki
,
A.
, and
Mazurowski
,
M. A.
,
2018
, “
A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks
,”
Neural Networks
,
106
, pp.
249
259
.10.1016/j.neunet.2018.07.011
22.
Gao
,
L.
,
Liu
,
H.
,
Yang
,
M.
,
Chen
,
L.
,
Wan
,
Y.
,
Xiao
,
Z.
, and
Qian
,
Y.
,
2021
, “
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
14
, pp.
10990
11003
.10.1109/JSTARS.2021.3119654
23.
Gao
,
L.
,
Zhang
,
J.
,
Yang
,
C.
, and
Zhou
,
Y.
,
2022
, “
Cas-VSwin Transformer: A Variant Swin Transformer for Surface-Defect Detection
,”
Comput. Ind.
,
140
, p.
103689
.10.1016/j.compind.2022.103689
24.
Wang
,
Z.
,
Zhao
,
J.
,
Zhang
,
R.
,
Li
,
Z.
,
Lin
,
Q.
, and
Wang
,
X.
,
2021
, “
UATNet: U-Shape Attention-Based Transformer Net for Meteorological Satellite Cloud Recognition
,”
Remote Sens.
,
14
(
1
), p.
104
.10.3390/rs14010104
25.
Di Maggio
,
L. G.
,
2022
, “
Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification
,”
Sensors
,
23
(
1
), p.
211
.10.3390/s23010211
26.
Smith
,
W. A.
, and
Randall
,
R. B.
,
2015
, “
Rolling Element Bearing Diagnostics Using the Case Western Reserve University Data: A Benchmark Study
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
100
131
.10.1016/j.ymssp.2015.04.021
27.
Hendriks
,
J.
,
Dumond
,
P.
, and
Knox
,
D.
,
2022
, “
Towards Better Benchmarking Using the CWRU Bearing Fault Dataset
,”
Mech. Syst. Signal Process.
,
169
, p.
108732
.10.1016/j.ymssp.2021.108732
28.
Center
,
B. D.
,
2021
, “Bearing Data Center,” Case Western Reserve University, Cleveland, OH, accessed Jan. 25, 2022, https://engineering.case.edu/bearingdatacenter
29.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
(
1
), pp.
33
38
.10.1016/0263-7855(96)00018-5
30.
Mao
,
M.
,
Zeng
,
K.
,
Tan
,
Z.
,
Zeng
,
Z.
,
Hu
,
Z.
,
Chen
,
X.
, and
Qin
,
C.
,
2023
, “
Adaptive VMD–K-SVD-Based Rolling Bearing Fault Signal Enhancement Study
,”
Sensors
,
23
(
20
), p.
8629
.10.3390/s23208629
31.
Carleo
,
G.
,
Cirac
,
I.
,
Cranmer
,
K.
,
Daudet
,
L.
,
Schuld
,
M.
,
Tishby
,
N.
,
Vogt-Maranto
,
L.
, and
Zdeborová
,
L.
,
2019
, “
Machine Learning and the Physical Sciences
,”
Rev. Mod. Phys.
,
91
(
4
), p.
045002
.10.1103/RevModPhys.91.045002
32.
Zeinali
,
H.
,
Sameti
,
H.
, and
Burget
,
L.
,
2017
, “
HMM-Based Phrase-Independent i-Vector Extractor for Text-Dependent Speaker Verification
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
,
25
(
7
), pp.
1421
1435
.10.1109/TASLP.2017.2694708
33.
Cao
,
J.
,
Cao
,
M.
,
Wang
,
J.
,
Yin
,
C.
,
Wang
,
D.
, and
Vidal
,
P.-P.
,
2019
, “
Urban Noise Recognition With Convolutional Neural Network
,”
Multimedia Tools Appl.
,
78
(
20
), pp.
29021
29041
.10.1007/s11042-018-6295-8
34.
Cheng
,
T.
,
Wang
,
X.
,
Huang
,
L.
, and
Liu
,
W.
,
2020
, “
Boundary-Preserving Mask R-CNN
,”
Computer Vision–ECCV 2020: 16th European Conference
, Glasgow, UK, Aug. 23–28, pp.
660
676
.https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123590647.pdf
35.
Lingfei
,
Y.
, and
Qiang
,
L.
,
2019
, “
Research and Application of Deep Recurrent Neural Networks Based Voiceprint Recognition
,”
Appl. Res. Comput.
,
1
, pp.
153
158
.10.19734/j.issn.1001-3695.2017.07.0661
36.
Li
,
X.
, and
Wu
,
X.
,
2015
, “
Constructing Long Short-Term Memory Based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition
,”
2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(
ICASSP
), South Brisbane, QLD, Australia, Apr. 19–24, pp.
4520
4524
.10.1109/ICASSP.2015.7178826
37.
Cheng
,
X.
,
Lin
,
H.
,
Wu
,
X.
,
Shen
,
D.
,
Yang
,
F.
,
Liu
,
H.
, and
Shi
,
N.
,
2022
, “
MLTR: Multi-Label Classification With Transformer
,” 2022 IEEE International Conference on Multimedia and Expo (
ICME
), Taipei, Taiwan, July 18–22, pp.
1
6
.10.1109/ICME52920.2022.9860016
38.
Huang
,
J.
,
Fang
,
Y.
,
Wu
,
Y.
,
Wu
,
H.
,
Gao
,
Z.
,
Li
,
Y.
,
Del Ser
,
J.
,
Xia
,
J.
, and
Yang
,
G.
,
2022
, “
Swin Transformer for Fast MRI
,”
Neurocomputing
,
493
, pp.
281
304
.10.1016/j.neucom.2022.04.051
39.
Woo
,
S.
,
Park
,
J.
,
Lee
,
J.-Y.
, and
Kweon
,
I. S.
,
2018
, “
CBAM: Convolutional Block Attention Module
,”
Proceedings of the European Conference on Computer Vision
(
ECCV
), Munich, Germany, Sept. 8–14, pp.
3
19
.10.1007/978-3-030-01234-2_1
40.
Li
,
X.
,
Wang
,
W.
,
Hu
,
X.
, and
Yang
,
J.
,
2019
, “
Selective Kernel Networks
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(
CVPR
), Long Beach, CA, June 15–20, pp.
510
519
.10.1109/CVPR.2019.00060
41.
Liu
,
Y.
, and
Li
,
J.
,
2020
, “
Comparing the Effectiveness of Two Convolutional Neural Networks Methods on Fault Diagnosis
,” 2020 IEEE Ninth Data Driven Control and Learning Systems Conference (
DDCLS
), Liuzhou, China, Nov. 20–22, pp.
350
354
.10.1109/DDCLS49620.2020.9275096
42.
Mehta
,
S.
, and
Rastegari
,
M.
,
2021
, “
MobileViT: Light-Weight, General-Purpose, and Mobile-Friendly Vision Transformer
,” preprint arXiv:2110.02178.
43.
Tan
,
M.
, and
Le
,
Q.
,
2021
, “
EfficientNetV2: Smaller Models and Faster Training
,”
International Conference on Machine Learning
, Austria, Vienna, July 18–24, pp.
10096
10106
.
44.
Ding
,
X.
,
Zhang
,
X.
,
Ma
,
N.
,
Han
,
J.
,
Ding
,
G.
, and
Sun
,
J.
,
2021
, “
RepVGG: Making VGG-Style ConvNets Great Again
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(
CVPR
), Nashville, TN, June 20–25, pp.
13733
13742
.10.1109/CVPR46437.2021.01352
45.
Arnab
,
A.
,
Dehghani
,
M.
,
Heigold
,
G.
,
Sun
,
C.
,
Lučić
,
M.
, and
Schmid
,
C.
,
2021
, “
ViViT: A Video Vision Transformer
,”
IEEE/CVF International Conference on Computer Vision
(
ICCV
), Montreal, QC, Canada, Oct. 10–17, pp.
6836
6846
.10.1109/ICCV48922.2021.00676
46.
Han
,
K.
,
Xiao
,
A.
,
Wu
,
E.
,
Guo
,
J.
,
Xu
,
C.
, and
Wang
,
Y.
,
2021
, “
Transformer in Transformer
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
15908
15919
.10.48550/arXiv.2103.00112
You do not currently have access to this content.