Abstract

With the advantages of a small footprint, wide under-bridge view, and beautiful appearance, single-column pier bridges are widely used in urban bridge networks. However, single-column pier bridges are prone to damage during earthquakes or heavy vehicle use, which can seriously affect normal operations and postdisaster recoveries. Therefore, there is an urgent need to carry out seismic resilience assessments of single-column pier bridges and formulate disaster prevention and mitigation measures from the aspects of design, maintenance, and postearthquake recovery. This paper first establishes a resilience assessment framework for the single-column pier bridge and optimizes a functionality recovery model after an earthquake. Then, a numerical model of a sample bridge is built for resilience fragility analysis. Nonlinear dynamic time history analysis is performed to build a probabilistic seismic demand model, and moment–curvature analysis is performed to build a probabilistic seismic capacity model. Finally, a seismic resilience assessment of the single-column pier bridge is obtained based on the seismic fragility, and a sensitivity analysis is carried out for the pier height, pier section dimension, span and vehicle load level to improve the resilience of the single-column pier bridge.

References

1.
Zhang
,
Y.
,
2015
, “
On the Climatic Uncertainty to the Environment Extremes: A Singapore Case and Statistical Approach
,”
Pol. J. Environ. Stud.
,
24
(
3
), pp.
1413
1422
.10.15244/pjoes/31718
2.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O'Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.10.1193/1.1623497
3.
Zhang
,
W. L.
,
Wang
,
N. Y.
, and
Nicholson
,
C.
,
2017
, “
Resilience-Based Post-Disaster Recovery Strategies for Road-Bridge Networks
,”
Struct. Infrastruct. Eng.
,
13
(
11
), pp.
1404
1413
.10.1080/15732479.2016.1271813
4.
Wang
,
T.
,
Liu
,
Y.
,
Li
,
Q. Y.
,
Du
,
P.
,
Zheng
,
X. G.
, and
Gao
,
Q. F.
,
2022
, “
State-of-the-Art Review of the Resilience of Urban Bridge Networks
,”
Sustainability.
,
15
(
1
), pp.
1
18
.10.3390/su15010001
5.
Zhang
,
Z. H.
,
Liu
,
X.
,
Zhang
,
Y.
,
Zhou
,
M. L.
, and
Chen
,
J. G.
,
2020
, “
Time Interval of Multiple Crossings of the Wiener Process and a Fixed Threshold in Engineering
,”
Mech. Syst. Signal Process.
,
135
, p.
106389
.10.1016/j.ymssp.2019.106389
6.
Gao
,
Q. F.
,
Dong
,
Z. L.
,
Cui
,
K. M.
,
Liu
,
C. G.
, and
Liu
,
Y.
,
2020
, “
Fatigue Performance of Profiled Steel Sheeting-Concrete Bridge Decks Subjected to Vehicular Loads
,”
Eng. Struct.
,
213
, p.
110558
.10.1016/j.engstruct.2020.110558
7.
Zhang
,
Y.
, and
Cao
,
Y. Y.
,
2015
, “
A Fuzzy Quantification Approach of Uncertainties in an Extreme Wave Height Modeling
,”
Acta Oceanol. Sin.
,
34
(
3
), pp.
90
98
.10.1007/s13131-015-0636-5
8.
Wang
,
B. J.
,
Zhao
,
H.
,
Zhang
,
H.
,
Peng
,
W. B.
, and
Lu
,
C. Y.
,
2017
, “
Lateral Stability Calculation Theory and Verification of Single-Column Girder Bridge
,”
China J. Highw. Transp.
,
30
(
09
), pp.
93
100
.10.19721/j.cnki.1001-7372.2017.09.012
9.
Peng
,
W. B.
,
Tang
,
Z. W.
,
Wang
,
D. Z.
,
Cao
,
X. J.
,
Dai
,
F.
, and
Taciroglu
,
E.
,
2020
, “
A Forensic Investigation of the Xiaoshan Ramp Bridge Collapse
,”
Eng. Struct.
,
224
, pp.
111203
14
.10.1016/j.engstruct.2020.111203
10.
Xiong
,
W.
,
Lu
,
S. D.
,
Gong
,
X.
,
Cui
,
S. S.
, and
Ye
,
J. S.
,
2018
, “
Critical Condition Analysis of Overturned Bridges With Single-Column Piers and Applicability of Design Standards
,”
China J. Highw. Transp.
,
31
(
3
), pp.
49
58
.10.19721/j.cnki.1001-7372.2018.03.006
11.
Kawatani
,
M.
,
Kim
,
C. W.
, and
Yasui
,
K.
,
2007
, “
Seismic Response of a Highway Bridge Under Traffic Loadings
,”
Proceedings of Pacific Structural Steel Conference 2007: Steel Structures in Natural Hazards
, Wairakei, New Zealand, Mar. 13–16, pp.
183
188
.https://www.researchgate.net/publication/289058441_Seismic_response_of_a_highway_bridge_under_traffic_loadings
12.
Ghosh
,
J.
,
Caprani
,
C. C.
, and
Padgett
,
J. E.
,
2014
, “
Influence of Traffic Loading on the Seismic Reliability Assessment of Highway Bridge Structures
,”
J. Bridge Eng.
,
19
(
3
), pp.
1
11
.10.1061/(ASCE)BE.1943-5592.0000535
13.
Cornell
,
A. C.
,
Jalayer
,
F.
,
Hamburger
,
R. O.
, and
Foutch
,
D. A.
,
2002
, “
Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines
,”
J. Struct. Eng.
,
128
(
4
), pp.
526
533
.10.1061/(ASCE)0733-9445(2002)128:4(526)
14.
Ellingwood
,
B. R.
, and
Kinali
,
K.
,
2009
, “
Quantifying and Communicating Uncertainty in Seismic Risk Assessment
,”
Struct. Saf.
,
31
(
2
), pp.
179
187
.10.1016/j.strusafe.2008.06.001
15.
Zhang
,
J. R.
,
2015
, “
Evaluation Method of Earthquake Induced Hydrodynamic Effect and Seismic Resilience for Deep-Water Bridges in Reservoir
,” Master's thesis,
Southwest Jiaotong University
,
Chengdu, China
.
16.
Li
,
H. N.
,
Cheng
,
H.
, and
Wang
,
D. S.
,
2018
, “
A Review of Advance in Seismic Fragility Research on Bridge Structures
,”
Eng. Mech.
,
35
(
09
), pp.
1
16
.10.6052/j.issn.1000-4750.2017.04.0280
17.
Cimellaro
,
G. P.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2010
, “
Framework for Analytical Quantification of Disaster Resilience
,”
Eng. Struct.
,
32
(
11
), pp.
3639
3649
.10.1016/j.engstruct.2010.08.008
18.
Cimellaro
,
G. P.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2006
, “
Quantification of Seismic Resilience
,”
In Proceedings of the 8th U.S. National Conference on Earthquake Engineering
,
San Francisco, CA, Apr. 18–22
, Vol.
8
, No. 1094, pp.
1
10
.
19.
Pang
,
Y. T.
,
Wei
,
K.
, and
Yuan
,
W. C.
,
2020
, “
Life-Cycle Seismic Resilience Assessment of Highway Bridges With Fiber-Reinforced Concrete Piers in the Corrosive Environment
,”
Eng. Struct.
,
222
, p.
111120
.10.1016/j.engstruct.2020.111120
20.
Ishibashi
,
H.
,
Akiyama
,
M.
,
Frangopol
,
D. M.
,
Koshimura
,
S.
,
Kojima
,
T.
, and
Nanami
,
K.
,
2020
, “
Framework for Estimating the Risk and Resilience of Road Networks With Bridges and Embankments Under Both Seismic and Tsunami Hazards
,”
Struct. Infrastruct. Eng.
,
17
(
4
), pp.
494
514
.10.1080/15732479.2020.1843503
21.
Li
,
Y. H.
,
Dong
,
Y.
,
Frangopol
,
D. M.
, and
Gautam
,
D.
,
2020
, “
Long-Term Resilience and Loss Assessment of Highway Bridges Under Multiple Natural Hazards
,”
Struct. Infrastruct. Eng.
,
16
(
4
), pp.
626
641
.10.1080/15732479.2019.1699936
22.
Cimellaro
,
G. P.
,
Fumo
,
C.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2009
, “
Quantification of Disaster Resilience of Health Care Facilities
,” MCEER, Buffalo, NY, Report No. MCEER-09-0009.
23.
Dong
,
Y.
,
Frangopol
,
D. M.
, and
Saydam
,
D.
,
2014
, “
Sustainability of Highway Bridge Networks Under Seismic Hazard
,”
J. Earthquake Eng.
,
18
(
1
), pp.
41
66
.10.1080/13632469.2013.841600
24.
ATC
,
1985
, “
Earthquake Damage Evaluation Data for California
,” ATC-13 Report,
Applied Technology Council
, Redwood City, CA.
25.
Federal Emergency Management Agency
,
2011
, “
Multi-Hazard Loss Estimation Methodology: Earthquake Model Hazus-MH MR5 Technical Manual
,” U.S. Department of Homeland Security,
WA
.
26.
Biondini
,
F.
,
Camnasio
,
E.
, and
Titi
,
A.
,
2015
, “
Seismic Resilience of Concrete Structures Under Corrosion
,”
Earthquake Eng. Struct. Dyn.
,
44
(
14
), pp.
2445
2466
.10.1002/eqe.2591
27.
Mander
,
J. B.
,
Priestley
,
M. J. N.
, and
Park
,
R.
,
1988
, “
Theoretical Stress-Strain Model for Confined Concrete
,”
J. Struct. Eng.
,
114
(
8
), pp.
1804
1826
.10.1061/(ASCE)0733-9445(1988)114:8(1804)
28.
Pacific Earthquake Engineering Research Center (PEER),
“PEER Ground Motion Database,” accessed Feb. 9, 2024, https://ngawest2.berkeley.edu
29.
Medina
,
R. A.
,
2003
, “
Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motions
,” Master's Thesis,
Stanford University
,
San Francisco, American
.
30.
ATC
,
2009
, “
Quantification of Building Seismic Performance Factors
,” ATC-63 Report, Applied Technology Council, Redwood City, CA.
31.
Huang
,
M. G.
,
2009
, “
Seismic Fragility, Hazard and Risk Analysis of Reinforced Concrete Continuous Girder Bridges
,” Master's Thesis,
Harbin Institute of Technology
,
Harbin, China
.
32.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
You do not currently have access to this content.