Abstract

Spindle rotation error directly correlates with the quality of mechanical processing. Currently, the error was mainly converted through measuring the distance information of standard component installed at the tool position, and it can't complete the normal machining because the tool is occupied. Therefore, a novel self-adaptive supervised learning method through easy-collected vibration signal that don't affect the machining to indirect predict the error. This method includes three steps: First, the original vibration signal is decomposed by local mean decompression (LMD) method to obtain two critical components; subsequently, the two components are fused as a signal by a weighted-average approach; finally, the fused signal and corresponding error are self-adaptive supervised trained by the setting termination condition to modify fusion coefficient and network parameters. The method is used to analyze the data-set of spindle platform, which has collected the experimental data at speeds 1000, 2000, 3000, and 4000 more than 170 groups, and the indirect prediction accuracy reached 94.12%, 92.35%, 97.68%, and 90.59%, respectively. Additionally, the experimental results were compared and demonstrated by three aspects with current different algorithms.

References

1.
Ma
,
P.
,
Zhao
,
C.
,
Lu
,
X.
,
Gong
,
C.
, and
Niu
,
X.
,
2014
, “
Rotation Error Measurement Technology and Experimentation Research of High-Precision Hydrostatic Spindle
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1313
1320
.10.1007/s00170-014-5905-5
2.
Wang
,
L.
,
Zhang
,
B.
,
Wu
,
J.
,
Zhao
,
Q.
, and
Wang
,
J.
,
2020
, “
Stiffness Modeling, Identification, and Measuring of a Rotating Spindle
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
6
), pp.
1239
1252
.10.1177/0954406219890368
3.
Guan
,
Y.
,
Yang
,
J.
, and
Ding
,
H.
,
2022
, “
Data-Driven Machine Tools Motion Control Error Modeling Method Using Control Signal as Intermediate Value
,”
J. Mech. Eng.
,
58
(
23
), pp.
178
187
.
4.
Marsh
,
E.
,
Couey
,
J.
, and
Vallance
,
R.
,
2006
, “
Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
180
187
.10.1115/1.2118747
5.
Zhang
,
Y.
,
Tao
,
T.
, and
Mei
,
X.
,
2009
, “
An Online Spindle Rotation Error Measurement System Based on Improved Three-Point Method
,”
Proceedings of the 2009 9th International Conference on Electronic Measurement and Instruments
, Beijing, China, Aug., pp. 651–656.
6.
Geng
,
Y.
,
Zhao
,
X.
,
Yan
,
Y.
, and
Hu
,
Z.
,
2014
, “
An AFM-Based Methodology for Measuring Axial and Radial Error Motions of Spindles
,”
Meas. Sci. Technol.
,
25
(
5
), p.
055007
.10.1088/0957-0233/25/5/055007
7.
Jiao
,
Y.
,
Huang
,
M.
, and
Liu
,
P.
,
2019
, “
Optimal Measurement Angles of the Three-Probe Spindle Error Motion Separation Technique
,”
Meas. Sci. Technol.
,
30
(
9
), p.
095001
.10.1088/1361-6501/ab20af
8.
Shi
,
S.
,
Lin
,
J.
,
Wang
,
X.
, and
Zhao
,
M.
,
2016
, “
A Hybrid Three-Probe Method for Measuring the Roundness Error and the Spindle Error
,”
Precis. Eng.
,
45
, pp.
403
413
.10.1016/j.precisioneng.2016.03.020
9.
Khan
,
S.
, and
Yairi
,
T.
,
2018
, “
A Review on the Application of Deep Learning in System Health Management
,”
Mech. Syst. Signal Process.
,
107
, pp.
241
265
.10.1016/j.ymssp.2017.11.024
10.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
.10.1016/j.ymssp.2018.05.050
11.
Li
,
Y.
,
Xu
,
M.
,
Wang
,
R.
, and
Huang
,
W.
,
2016
, “
A Fault Diagnosis Scheme for Rolling Bearing Based on Local Mean Decomposition and Improved Multiscale Fuzzy Entropy
,”
J. Sound Vib.
,
360
, pp.
277
299
.10.1016/j.jsv.2015.09.016
12.
Feng
,
Z.
,
Liang
,
M.
, and
Chu
,
F.
,
2013
, “
Recent Advances in Time–Frequency Analysis Methods for Machinery Fault Diagnosis: A Review With Application Examples
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
165
205
.10.1016/j.ymssp.2013.01.017
13.
Han
,
M.
, and
Pan
,
J.
,
2015
, “
A Fault Diagnosis Method Combined With LMD, Sample Entropy and Energy Ratio for Roller Bearings
,”
Measurement
,
76
, pp.
7
19
.10.1016/j.measurement.2015.08.019
14.
Ben Ali
,
J.
,
Fnaiech
,
N.
,
Saidi
,
L.
,
Chebel-Morello
,
B.
, and
Fnaiech
,
F.
,
2015
, “
Application of Empirical Mode Decomposition and Artificial Neural Network for Automatic Bearing Fault Diagnosis Based on Vibration Signals
,”
Appl. Acoust.
,
89
, pp.
16
27
.10.1016/j.apacoust.2014.08.016
15.
Liu
,
H.
, and
Han
,
M.
,
2014
, “
A Fault Diagnosis Method Based on Local Mean Decomposition and Multi-Scale Entropy for Roller Bearings
,”
Mech. Mach. Theory
,
75
, pp.
67
78
.10.1016/j.mechmachtheory.2014.01.011
16.
Fu
,
Y.
,
Jia
,
L.
,
Qin
,
Y.
, and
Yang
,
J.
,
2016
, “
Product Function Correntropy and Its Application in Rolling Bearing Fault Identification
,”
Measurement
,
97
, pp.
88
99
.10.1016/j.measurement.2016.10.037
17.
Shen
,
Z.
,
Chen
,
X.
,
Zhang
,
X.
, and
He
,
Z.
,
2012
, “
A Novel Intelligent Gear Fault Diagnosis Model Based on EMD and Multi-Class TSVM
,”
Measurement
,
45
(
1
), pp.
30
40
.10.1016/j.measurement.2011.10.008
18.
Wang
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2010
, “
A Comparative Study on the Local Mean Decomposition and Empirical Mode Decomposition and Their Applications to Rotating Machinery Health Diagnosis
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021010
.10.1115/1.4000770
19.
Liang
,
J.
,
Wang
,
L.
,
Wu
,
J.
, and
Liu
,
Z.
,
2020
, “
Elimination of End Effects in LMD Based on LSTM Network and Applications for Rolling Bearing Fault Feature Extraction
,”
Math. Probl. Eng.
,
2020
, pp.
1
16
.10.1155/2020/7293454
20.
Guo
,
W.
,
Huang
,
L.
,
Chen
,
C.
,
Zou
,
H.
, and
Liu
,
Z.
,
2016
, “
Elimination of End Effects in Local Mean Decomposition Using Spectral Coherence and Applications for Rotating Machinery
,”
Digital Signal Process.
,
55
, pp.
52
63
.10.1016/j.dsp.2016.04.007
21.
Yuan
,
M.
,
Wu
,
Y.
, and
Li
,
L.
,
2016
, “
Fault Diagnosis and Remaining Useful Life Estimation of Aero Engine Using LSTM Neural Network
,”
Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems
, Beijing, China, Oct. 10–12, pp.
116
121
.10.1109/AUS.2016.7748035
22.
Glowacz
,
A.
,
2023
, “
Thermographic Fault Diagnosis of Electrical Faults of Commutator and Induction Motors
,”
Eng. Appl. Artif. Intell.
,
121
, p.
105962
.10.1016/j.engappai.2023.105962
23.
Chen
,
D.
,
Wang
,
L.
,
Kong
,
W.
,
Liang
,
J.
,
Wu
,
J.
, and
Gong
,
X.
,
2020
, “
A Prediction Method of Spindle Rotation Error Based on Vibration Signal
,”
Sci. Sin. Technol.
,
50
(
6
), pp.
819
828
.10.1360/SST-2019-0363
24.
Liang
,
J.
,
Wang
,
L.
,
Wu
,
J.
,
Liu
,
Z.
, and
Yu
,
G.
,
2020
, “
Elimination of End Effects in LMD by Bi-LSTM Regression Network and Applications for Rolling Element Bearings Characteristic Extraction Under Different Loading Conditions
,”
Digital Signal Process.
,
107
, p.
102881
.10.1016/j.dsp.2020.102881
25.
Luo
,
J.
, and
Zhang
,
X.
,
2021
, “
Convolutional Neural Network Based on Attention Mechanism and Bi-LSTM for Bearing Remaining Life Prediction
,”
Appl. Intell.
,
52
(
1
), pp.
1076
1091
.10.1007/s10489-021-02503-2
26.
Zhao
,
R.
,
Yan
,
R.
,
Wang
,
J.
, and
Mao
,
K.
,
2017
, “
Learning to Monitor Machine Health With Convolutional Bi-Directional LSTM Networks
,”
Sensors
,
17
(
2
), pp.
273
291
.10.3390/s17020273
27.
Liang
,
J.
,
Wang
,
L.
,
Wu
,
J.
,
Liu
,
Z.
, and
Yu
,
G.
,
2021
, “
Prediction of Spindle Rotation Error Through Vibration Signal Based on Bi-LSTM Classification Network
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1043
(
4
), p.
042033
.10.1088/1757-899X/1043/4/042033
28.
Castro
,
H. F. F.
,
2008
, “
A Method for Evaluating Spindle Rotation Errors of Machine Tools Using a Laser Interferometer
,”
Measurement
,
41
(
5
), pp.
526
537
.10.1016/j.measurement.2007.06.002
29.
Li
,
X.
,
Wei
,
Z.
, and
Ding
,
Q.
,
2019
, “
Understanding and Improving Deep Learning-Based Rolling Bearing Fault Diagnosis With Attention Mechanism
,”
Signal Process.
,
161
(
8
), pp.
136
154
.10.1016/j.sigpro.2019.03.019
30.
Dey
,
M.
,
Omar
,
N.
, and
Ullah
,
M. A.
,
2021
, “
Temporal Feature-Based Classification Into Myocardial Infarction and Other CVDs Merging CNN and Bi-LSTM From ECG Signal
,”
IEEE Sens. J.
,
21
(
19
), pp.
21688
21695
.10.1109/JSEN.2021.3079241
31.
Yin
,
H.
,
2018
, “
Tensor Sparse Representation for 3-D Medical Image Fusion Using Weighted Average Rule
,”
IEEE Trans. Biomed. Eng.
,
65
(
11
), pp.
2622
2633
.10.1109/TBME.2018.2811243
32.
Matsubara
,
A.
,
Sawamura
,
R.
,
Asano
,
K.
, and
Muraki
,
T.
,
2014
, “
Non-Contact Measurement of Dynamic Stiffness of Rotating Spindle
,”
Procedia CIRP
,
14
, pp.
484
487
.10.1016/j.procir.2014.03.012
33.
Matsubara
,
A.
,
Tsujimoto
,
S.
, and
Kono
,
D.
,
2015
, “
Evaluation of Dynamic Stiffness of Machine Tool Spindle by Non-Contact Excitation Tests
,”
CIRP Ann.
,
64
(
1
), pp.
365
368
.10.1016/j.cirp.2015.04.101
34.
Chen
,
D.
,
Wu
,
J.
, and
Zhang
,
B.
,
2018
, “
Load Spectrum Compilation for Machining Center Spindles Based on S-Shaped Specimens
,”
J. Tsinghua Univ., Sci. Technol.
,
58
(
12
), pp.
73
80
.
You do not currently have access to this content.