Abstract

This work uses numerical simulations to systematically study the dynamic performance of high-speed railroad bridges in cold areas based on coupled vibration analyses of axles and vehicles during freeze–thaw cycles. The freezing and thawing cycles of perennial frozen soil were established with comsol software, and the changes of the soil components during freezing and thawing cycles were analyzed with an indirect solution method and reasonable hydrothermal parameters and freezing and thawing boundary conditions. With the establishment of a pile–soil interaction simulation model, the change rule for pile foundation displacement and the force characteristics of pile foundations during freeze–thaw cycles were studied. abaqus and um software were used to simulate the coupled vibrations of axles, select the indexes for evaluation of train safety and the smoothness of the high-speed railroad trains, and investigate the influence of foundation freezing and pulling displacements on the dynamic performance of high-speed trains.

References

1.
Taber
,
S.
,
1930
, “
The Mechanics of Frost Heaving
,”
J. Geol.
,
38
(
4
), pp.
303
317
.10.1086/623720
2.
Loch, J. P. G., 1982, “State-of-the-art Report–Frost Action in Soils,”
Developments in Geotechnical Engineering.
, 28, pp. 213–224.10.1016/0013-7952(81)90061-2
3.
Miller
,
R. D.
,
1972
, “
Freezing and Heaving of Saturated and Unsaturated Soils
,”
Highw. Res. Rec.
,
393
(
1
), pp.
1
11
.https://onlinepubs.trb.org/Onlinepubs/hrr/1972/393/393-001.pdf
4.
Takagi
,
S.
,
1980
, “
The Adsorption Force Theory of Frost Heaving
,”
Cold Reg. Sci. Technol.
,
3
(
1
), pp.
57
81
.10.1016/0165-232X(80)90007-5
5.
Bahar
,
R.
,
Benazzoug
,
M.
, and
Kenai
,
S.
,
2004
, “
Performance of Compacted Cement-Stabilised Soil
,”
Cem. Concr. Compos.
,
26
(
7
), pp.
811
820
.10.1016/j.cemconcomp.2004.01.003
6.
Li
,
X. L.
, and
Wang
,
W.
,
2020
, “
Experimental Investigation on the Properties of Thawing Settlement and Influencing Factors of Silty Clay in Changchun Area
,”
Sci. Technol. Eng.
,
20
(
36
), pp.
14854
14861
.
7.
Morgenstern
,
N. R.
, and
Nixon
,
J. F.
,
1971
, “
One-Dimensional Consolidation of Thawing Soils
,”
Can. Geotech. J.
,
8
(
4
), pp.
558
565
.10.1139/t71-057
8.
Zhang
,
X.
,
Yang
,
Z. J.
,
Chen
,
X.
,
Guan
,
J.
,
Pei
,
W.
, and
Luo
,
T.
,
2021
, “
Experimental Study of Frozen Soil Effect on Seismic Behavior of Bridge Pile Foundations in Cold Regions
,”
Structures
,
32
(
1
), pp.
1752
1762
.10.1016/j.istruc.2021.03.119
9.
Penner
,
E.
,
1974
, “
Uplift Forces on Foundations in Frost Heaving Soils
,”
Can. Geotech. J.
,
11
(
3
), pp.
323
338
.10.1139/t74-034
10.
Tran
,
T. T.
, and
Salman
,
K.
,
2021
, “
Probabilistic Models for Uncertainty Quantification of Soil Properties on Site Response Analysis
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
,
7
(
4
), p.
04020030
.10.1061/AJRUA6.0001079
11.
Zhussupbekov
,
A.
,
Shin
,
E. C.
, and
Shakhmov
,
Z.
,
2018
, “
Experimental Study of Model Pile Foundations in Seasonally Freezing Soil Ground
,”
GEOMATE J.
,
15
(
51
), pp.
85
90
.10.21660/2018.51.90835
12.
Liu
,
K.
,
De
,
R. G.
, and
Lombaert
,
G.
,
2009
, “
The Effect of Dynamic Train-Bridge Interaction on the Bridge Response During a Train Passage
,”
J. Sound Vib.
,
325
(
1–2
), pp.
240
251
.10.1016/j.jsv.2009.03.021
13.
Fu
,
C. Y.
,
2015
, “
The Effect of Switching Cracks on the Vibration of a Continuous Beam Bridge Subjected to Moving Vehicles
,”
J. Sound Vib.
,
339
, pp.
157
175
.10.1016/j.jsv.2014.11.009
14.
Shi
,
L.
,
Cai
,
Y. Q.
,
Wang
,
P.
, and
Sun
,
H. L.
,
2016
, “
A Theoretical Investigation on Influences of Slab Tracks on Vertical Dynamic Responses of Railway Viaducts
,”
J. Sound Vib.
,
374
, pp.
138
154
.10.1016/j.jsv.2016.04.011
15.
Cheung
,
Y. K.
,
Au
,
F. T. K.
,
Zheng
,
D. Y.
, and
Cheng
,
Y. S.
,
1999
, “
Vibration of Multi-Span Bridges Under Moving Vehicles and Trains by Using Modified Beam Vibration Functions
,”
J. Sound Vib.
,
228
(
3
), pp.
611
628
.10.1006/jsvi.1999.2423
16.
Xia
,
H.
,
Xu
,
Y. L.
, and
Chan
,
T. H. T.
,
2000
, “
Dynamic Interaction of Long Suspension Bridges With Running Trains
,”
J. Sound Vib.
,
237
(
2
), pp.
263
280
.10.1006/jsvi.2000.3027
17.
Lee
,
C. H.
,
Kawatani
,
M.
,
Kim
,
C. W.
,
Nishimura
,
N.
, and
Kobayashi
,
Y.
,
2006
, “
Dynamic Response of a Monorail Steel Bridge Under a Moving Train
,”
J. Sound Vib.
,
294
(
3
), pp.
562
579
.10.1016/j.jsv.2005.12.028
18.
Zhang
,
N.
,
Xia
,
H.
, and
Guo
,
W. W.
,
2008
, “
Vehicle–Bridge Interaction Analysis Under High-Speed Trains
,”
J. Sound Vib.
,
309
(
3–5
), pp.
407
425
.10.1016/j.jsv.2007.07.064
19.
Gao
,
Q. F.
,
Dong
,
Z. L.
,
Cui
,
K. M.
,
Liu
,
C. G.
, and
Liu
,
Y.
,
2020
, “
Fatigue Performance of Profiled Steel Sheeting-Concrete Bridge Decks Subjected to Vehicular Loads
,”
Eng. Struct.
,
213
, p.
110558
.10.1016/j.engstruct.2020.110558
20.
Zhang
,
Y.
,
2015
, “
A Fuzzy Residual Strength Based Fatigue Life Prediction Method
,”
Struct. Eng. Mech.
,
56
(
2
), pp.
201
221
.10.12989/sem.2015.56.2.201
21.
Liu
,
Q.
,
Thompson
,
D. J.
,
Xu
,
P.
,
Feng
,
Q.
, and
Li
,
X.
,
2020
, “
Investigation of Train-Induced Vibration and Noise From a Steel-Concrete Composite Railway Bridge Using a Hybrid Finite Element-Statistical Energy Analysis Method
,”
J. Sound Vib.
,
471
, p.
115197
.10.1016/j.jsv.2020.115197
22.
Filizadeh
,
R.
, and
Hernandez
,
E.
,
2021
, “
Time-Dependent Damage Evolution of Reinforced Concrete Bridge Piers: Implications for Multihazard Analysis
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
,
9
(
1
), p.
04022066
.10.1061/AJRUA6.RUENG-953
23.
Zhang
,
Y.
, and
Cao
,
Y. Y.
,
2015
, “
A Fuzzy Quantification Approach of Uncertainties in an Extreme Wave Height Modeling
,”
Acta Oceanol. Sin.
,
34
(
3
), pp.
90
98
.10.1007/s13131-015-0636-5
24.
Zhai
,
W.
,
Han
,
Z.
,
Chen
,
Z.
,
Ling
,
L.
, and
Zhu
,
S.
,
2019
, “
Train-Track-Bridge Dynamic Interaction: A State-of-the-Art Review
,”
Veh. Syst. Dyn.
,
57
(
7
), pp.
984
1027
.10.1080/00423114.2019.1605085
25.
Zhao
,
J. Y.
, and
Franza
,
A.
,
2021
, “
Method for Probabilistic Assessment of Tunneling-Induced Damage to Surface Structures Considering Soil-Structure Interaction Effects
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
,
6
(
3
), p.
04021055
.10.1061/AJRUA6.0001175
26.
Wang
,
H. Y.
, and
Markine
,
V.
,
2019
, “
Dynamic Behaviour of the Track in Transitions Zones Considering the Differential Settlement
,”
J. Sound Vib.
,
459
, p.
114863
.10.1016/j.jsv.2019.114863
27.
Zhai
,
W. M.
, and
Cai
,
C. B.
,
2002
, “
Train/Track/Bridge Dynamic Interactions: Simulation and Applications
,”
Veh. Syst. Dyn.
,
37
(
Suppl. 1
), pp.
653
665
.10.1080/00423114.2002.11666270
28.
Zhai
,
W. M.
,
Cai
,
C. B.
, and
Wang
,
K. Y.
,
2004
, “
Numerical Simulation and Field Experiment of High-Speed Train-Track-Bridge System Dynamics
,”
Veh. Syst. Dyn.
,
41
, pp.
677
686
.https://trid.trb.org/view/745089
29.
Zhai
,
W.
,
Xia
,
H.
,
Cai
,
C.
,
Gao
,
M.
,
Li
,
X.
,
Guo
,
X.
,
Zhang
,
N.
, and
Wang
,
K.
,
2013
, “
High-Speed Train-Track-Bridge Dynamic Interactions–Part I: Theoretical Model and Numerical Simulation
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
3
24
.10.1080/23248378.2013.791498
30.
Zhai
,
W.
,
Wang
,
S.
,
Zhang
,
N.
,
Gao
,
M.
,
Xia
,
H.
,
Cai
,
C.
, and
Zhao
,
C.
,
2013
, “
High-Speed Train-Track-Bridge Dynamic Interactions–Part II: Experimental Validation and Engineering Application
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
25
41
.10.1080/23248378.2013.791497
31.
Chen
,
Z. W.
,
Zhai
,
W. M.
,
Cai
,
C. B.
, and
Sun
,
Y.
,
2015
, “
Safety Threshold of High-Speed Railway Pier Settlement Based on Train-Track-Bridge Dynamic Interaction
,”
Sci. China: Technol. Sci.
,
58
(
2
), pp.
202
210
.10.1007/s11431-014-5692-0
32.
Chen
,
Z. W.
,
Zhai
,
W. M.
, and
Yin
,
Q.
,
2018
, “
Analysis of Structural Stresses of Tracks and Vehicle Dynamic Responses in Train–Track–Bridge System With Pier Settlement
,”
Proc. Inst. Mech. Eng., Part F
,
232
(
2
), pp.
421
434
.10.1177/0954409716675001
33.
Chen
,
Z. W.
,
Sun
,
Y.
, and
Zhai
,
W. M.
,
2014
, “
Mapping Relationship Between Pier Settlement and Rail Deformation of High-Speed Railways—Part (I): the Unit Slab Track System
,”
Sci. Sin. (Technol.
),
44
, pp.
770
777
.10.1360/N092014-00105
34.
Chen
,
Z. W.
,
Sun
,
Y.
, and
Zhai
,
W. M.
,
2014
, “
Mapping Relationship Between Pier Settlement and Rail Deformation of High-Speed Railways—Part (II): the Longitudinal Connected Ballastless Track System
,”
Sci. Sin. (Technol.
),
44
(
7
), pp.
778
785
.10.1360/N092014-00106
35.
Chen
,
Z. W.
,
Zhai
,
W. M.
, and
Tian
,
G. Y.
,
2018
, “
Study on the Safe Value of Multi-Pier Settlement for Simply Supported Girder Bridges in High-Speed Railways
,”
Struct. Infrastruct. Eng.
,
14
(
3
), pp.
400
410
.10.1080/15732479.2017.1359189
36.
Chen
,
Z. W.
, and
Zhai
,
W. M.
,
2020
, “
Theoretical Method of Determining Pier Settlement Limit Value for China's High-Speed Railway Bridges Considering Complete Factors
,”
Eng. Struct.
,
209
, p.
109998
.10.1016/j.engstruct.2019.109998
37.
Zhang
,
Z.
,
Liu
,
X.
,
Zhang
,
Y.
,
Zhou
,
M.
, and
Chen
,
J.
,
2020
, “
Time Interval of Multiple Crossings of the Wiener Process and a Fixed Threshold in Engineering
,”
Mech. Syst. Signal Process.
,
135
, p.
106389
.10.1016/j.ymssp.2019.106389
38.
Chen
,
Z. W.
, and
Fang
,
H.
,
2021
, “
Influence of Pier Settlement on Contact Behavior Between CRTS II Track and Bridge in High-Speed Railways
,”
Eng. Struct.
,
235
, p.
112007
.10.1016/j.engstruct.2021.112007
39.
Lei
,
X. D.
,
2015
, “
Of High Speed Railway Track Dynamics: Model, Algorithms and Applications
,”
Science Press
, BJ.
You do not currently have access to this content.