In this study, different configurations of compound multilayer cylinders subjected to autofrettage and shrink-fit processes and under combined cyclic thermal and pressure loads have been investigated and their fatigue life has been evaluated and compared. Fully coupled thermo-elastic analysis is taken into consideration during the calculation of the temperature profile through the wall thickness. Finite element model for the compound two-layer cylinder has been constructed and then validated with previous work in the literature and experimental work. In the experimental work, the temperature has been measured at different locations through the thickness of a two-layer shrink-fitted cylinder (SFC), subjected to internal quasi-static and dynamic thermal loads. Besides, the hoop strain at the outer surface of the cylinder has been measured for the same thermal loads. Using the developed finite element model, the hoop stress distributions through the thickness of different configurations of the compound cylinder have been calculated under different loading conditions, including internal static pressure, internal cyclic thermal loads, and combination of these loads. The mechanical fatigue life has been calculated using ASME codes due to the internal cyclic pressure. Moreover, the stress intensity factor (SIF) has been calculated for these configurations under cyclic thermal loads or cyclic thermomechanical loads, considering thermal accumulation. The stress intensity factors for different configurations have been compared with the critical SIF which is the fracture toughness of the material. The number of stress cycles required until the SIF reaches the critical SIF has been considered as the fatigue life for each configuration. It has been found that for the cases of cyclic thermal loads and combined cyclic pressure and thermal loads, the shrink-fitting of two layers followed by the autofrettage of the assembly is the best configuration to enhance the fatigue life of the two-layer cylinder.

References

1.
Gamer
,
U.
, and
Lance
,
R.
,
1983
, “
Residual Stresses in Shrink-Fit
,”
Int. J. Mech. Sci.
,
25
, pp.
465
470
.10.1016/0020-7403(83)90039-5
2.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
3.
Parker
,
A. P.
,
2001
, “
Bauschinger Effect Design Procedures for Compound Tubes Containing an Autofrettaged Layer
,”
ASME J. Pressure Vessel Technol.
,
123
(
2
), pp.
203
206
.10.1115/1.1331281
4.
Parker
,
A. P.
, and
Kendall
,
D. P.
,
2003
, “
Residual Stresses and Lifetimes of Tubes Subjected to Shrink-Fit Prior to Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
282
286
.10.1115/1.1593074
5.
Majzoobi
,
G. H.
,
Farrahi
,
G. H.
,
Pipelzadeh
,
M. K.
, and
Akbari
,
A.
,
2004
, “
Experimental and Finite Element Prediction of Bursting Pressure in Compound Cylinder
,”
Int. J. Pressure Vessels Piping
,
81
, pp.
889
896
.10.1016/j.ijpvp.2004.06.011
6.
Jahed
,
H.
,
Farshi
,
B.
, and
Karimi
,
M.
,
2006
, “
Optimum Autofrettage and Shrink-Fit Combination in Multi-Layer Cylinders
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
196
200
.10.1115/1.2172957
7.
Lee
,
E. Y.
,
Lee
,
Y.-S.
,
Yang
,
Q.-M.
,
Kim
,
J.-H.
,
Cha
,
K.-U.
, and
Hong
,
S.-K.
,
2009
, “
Autofrettage Process Analysis of a Compound Cylinder Based on the Elastic-Perfectly Plastic and Strain Hardening Stress-Strain Curve
,”
J. Mech. Sci. Technol.
,
23
, pp.
3153
3160
.10.1007/s12206-009-1009-9
8.
Chen
,
I. H.
,
Kuang
,
C.
,
Lee
,
Z.-Y.
, and
Lee
,
C.
,
2001
, “
Thermo-Elastic Transient Response of Multilayered Hollow Cylinder With Initial Interface Pressure
,”
J. Therm. Stresses
,
24
, pp.
987
1006
.10.1080/014957301753191086
9.
Lee
,
Z.-Y.
,
Chen
,
C.-K.
, and
Hung
,
C.
,
2005
, “
Hybrid Numerical Method Applied to Multilayered Hollow Cylinder With Time-Dependent Boundary Conditions
,”
J. Therm. Stresses
,
28
, pp.
839
860
.10.1080/01495730590925056
10.
Lee
,
Z.-Y.
,
2005
, “
Hybrid Numerical Method Applied To 3-D Multilayered Hollow Cylinder With Periodic Loading Conditions
,”
Appl. Math. Comput.
,
166
, pp.
95
117
.10.1016/j.amc.2004.04.038
11.
Lee
,
Z.-Y.
,
2006
, “
Generalized Coupled Transient Response of 3-D Multilayered Hollow Cylinder
,”
J. Int. Commun. Heat Mass Transfer
,
33
, pp.
1002
1012
.10.1016/j.icheatmasstransfer.2006.05.007
12.
Birsan
,
M.
,
2009
, “
Thermal Stresses in Cylindrical Cosserat Elastic Shells
,”
Eur. J. Mech. A/Solids
,
28
, pp.
94
101
.10.1016/j.euromechsol.2008.03.001
13.
Yun
,
Y.
,
Jang
,
Y.
, II
, and
Tang
,
L.
,
2009
, “
Thermal Stresses Distribution in Thick Wall Cylinder Under Thermal Shock
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021212
.10.1115/1.3066882
14.
Ying
,
J.
, and
Wang
,
H. M.
,
2010
, “
Axisymmetric Thermo-Elastic Analysis in a Finite Hollow Cylinder Due to Nonuniform Thermal Shock
,”
Int. J. Pressure Vessels Piping
,
87
, pp.
714
720
.10.1016/j.ijpvp.2010.10.002
15.
Brischetto
,
S.
, and
Carrera
,
E.
,
2010
, “
Coupled Thermo-Mechanical Analysis of One-layered and Multilayered Plates
,”
J. Compos. Struct.
,
92
, pp.
1793
1812
.10.1016/j.compstruct.2010.01.020
16.
ASME
, Boiler and Pressure Vessel Code 2001, Section VIII, Division 3, Appendix D.
17.
Jahed
,
H.
,
Farshi
,
B.
, and
Hosseini
,
M.
,
2007
, “
The Actual Unloading Behavior Effect on Thermo-Mechanical Stress Intensity Factor and Life of Autofrettage Tubes
,”
Int. J. Fatigue
,
29
, pp.
360
369
.10.1016/j.ijfatigue.2006.02.053
18.
Alegre
,
J. M.
,
Cuesta
,
II
, and
Bravo
,
P. M.
,
2010
, “
Comparative Study of Different Fatigue Crack Growth Methods for the Design of Wire-Wound Vessels
,”
http://
www.gef.es/Congresos/27/PDF/2.pdf.
19.
Nabavi
,
S. M.
, and
Shahani
,
A. R.
,
2009
, “
Thermal Stress Intensity Factors for a Cracked Cylinder Under Transient Thermal Loading
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
153
163
.10.1016/j.ijpvp.2008.11.024
20.
Nabavi
,
S. M.
, and
Ghajar
,
R.
,
2010
, “
Analysis of Thermal Stress Intensity Factors for Cracked Cylinders Using Weight Function Method
,”
Int. J. Eng. Sci.
,
48
, pp.
1811
1823
.10.1016/j.ijengsci.2010.08.006
21.
Ghajar
,
R.
, and
Nabavi
,
S. M.
,
2010
, “
Closed Form of Thermal Stress Intensity Factors for an Internal Circumferential Cracked in a Thick-Walled Cylinder
,”
J. Fatigue Fract. Eng. Mater. Struct.
,
33
, pp.
504
512
.10.1111/j.1460-2695.2010.01459.x
22.
Lee
,
Y. S.
,
Park
,
J. H.
,
Kim
,
J. H.
,
Yang
,
Q. M.
,
Cha
,
K.-U.
, and
Hong
,
S.-K.
,
2007
, “
Fatigue Life of Compound Cylinder Combining Autofrettage and Shrink-Fit Due to Firing
,”
The 2nd International Conference on Advanced Nondestructive Testing
,
Pusan, Korea
, Vol. II, pp.
394
399
.
23.
ASME
, Alternative Rules for Construction of High Pressure Vessels in Boiler and Pressure Vessel Code 2010, Section VIII, Division 3.
24.
Underwood
,
J. H.
,
Parker
,
A. P.
,
Cote
,
P. J.
, and
Sopok
,
S.
,
1999
, “
Compressive Thermal Yielding Leading to Hydrogen Cracking in a Fired Cannon
,”
ASME J. Pressure Vessel Technol.
,
121
(
1
), pp.
116
120
.10.1115/1.2883658
25.
Underwood
,
J. H.
,
Parker
,
A. P.
,
Vigilante
,
G. N.
, and
Cote
,
P. J.
,
2003
, “
Thermal Damage, Cracking and Rapid Erosion of Cannon Bore Coatings
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
299
304
.10.1115/1.1593077
26.
ansys
,
2009
,
Theory Manual 2009
, Release 12.1 Documentation,
ANSYS, Inc.
,
Canonsburg, PA
.
27.
Allan
,
F. B.
,
2009
,
Applied Mechanics of Solids
,
CRC Press
,
Boca Raton, FL
.
28.
Rao
,
D. M.
, and
Sinha
,
P. K.
,
1997
, “
Finite Element Coupled Thermostructural Analysis of Composite Beams
,”
J. Comput. Struct.
,
63
, pp.
539
549
.10.1016/S0045-7949(96)00358-6
29.
Abdelsalam
,
O. R.
,
Sherif
,
H.
, and
Abo-Elkhair
,
M. S.
,
2003
, “
Instability of Barrel due to Mechanical and Thermal Excitations
,” M.Sc. thesis, Cairo, Egypt.
30.
Jahed
,
H.
, and
Ghanbari
,
G.
,
2003
, “
Actual Unloading Behavior and Its Significance on Residual Stress in Machined Autofrettaged Tube
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
321
235
.10.1115/1.1593070
31.
Parker
,
A. P.
,
2012
, “
Compound and Monobloc Cylinders Incorporating Reverse Autofrettage to Reduce External Hoop Stresses
,”
Proceedings of ASME PVP2012 Pressure Vessels and Piping Division Conference, July 15–19
,
Toronto, Canada
, Paper No. PVP2012-78298.
You do not currently have access to this content.