Abstract

Vacuum explosive welding technology has better performance, lower production cost, more environmentally friendly and other advantages. In order to meet the industrial demand for production in the area of metal composite plate, it is urgent to develop a super-large vacuum explosion containment vessel which can be used for explosive welding. Since soil is generally regarded as an effective energy-absorbing material, covering a certain thickness of soil above the steel plate can tremendously dissipate the energy of shock waves. Therefore, the dynamic response of the soil/steel composite structure on the explosion containment vessel under different explosive quantities and vacuum degrees was analyzed by experiments and numerical simulations. The dynamic strain curve collected by the experiment consists of an abruptly rising phase and a gradually decreasing vibration recovery phase. Comparing the peak strains, it was found that near-vacuum environment can significantly weaken the dynamic strain of soil/steel composite structures. Comparing the variation of the vibration amplitude of the composite structure with the cycles, it was found that reducing the amount of explosive and the vacuum degree inside the explosion containment vessel can effectively weaken the peak strain of the cover, and can also reduce the vibration amplitude of the composite structure. The dynamic response of soil/steel composite structure can be analyzed in four phases: Abrupt Increasing, Followed Impulse, Inertia Hysteresis, Static Pressure Stabilization.

References

1.
Niu
,
A. H.
,
2018
, “
Research and Practice of Vacuum Explosion Welding for Metal Cladding Product
,”
Eng. Blasting
,
24
(
4
), pp.
67
70
.
2.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
(
6
), pp.
766
775
.10.1063/1.1722085
3.
Baker
,
W. E.
,
1960
, “
The Elastic-Plastic Response of Thin Spherical Shells to Internal Blast Loading
,”
ASME J. Appl. Mech.
,
27
(
1
), pp.
139
144
.10.1115/1.3643888
4.
Baker
,
W. E.
,
Hu
,
W. C. L.
, and
Jackson
,
T. R.
,
1966
, “
Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
800
806
.10.1115/1.3625185
5.
White
,
I. J. J.
,
Trott
,
B. D.
, and
Backofen
,
J. J. E.
,
1977
, “
The Physics of Explosion Containment
,”
Phys. Technol.
,
8
(
3
), pp.
94
100
.10.1088/0305-4624/8/3/I01
6.
White
,
I. J. J.
, and
Trott
,
B. D.
,
1980
, “
Scaling Law for the Elastic Response of Spherical Explosion-Containment Vessels
,”
Exp. Mech.
,
20
(
5
), pp.
174
177
.10.1007/BF02327122
7.
Karpp
,
R. R.
,
Duffey
,
T. A.
, and
Neal
,
T. R.
,
1983
, “
Response of Containment Vessels to Explosive Blast Loading
,”
ASME J. Pressure Vessel Technol.
,
105
(
1
), pp.
23
27
.10.1115/1.3264234
8.
Isaiah
,
R.
,
Young
,
H. P.
, and
Jordan
,
U. S.
,
2019
, “
Analytical and Numerical Studies of a Thick Anisotropic Multilayered Fiber-Reinforced Composite Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
141
(
1
), p.
011203
.10.1115/1.4041887
9.
Liu
,
Z.
,
Li
,
X.
,
Wang
,
Y.
,
Yan
,
H.
, and
Zhou
,
D.
,
2024
, “
Shock Response of Water-Protected Spherical Explosion Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
146
(
5
), p.
051702
.10.1115/1.4065894
10.
Duan
,
Z. P.
,
1994
, “
The Experimental Study and Numerical Simulating of Explosion Containment Chamber
,”
China Saf. Sci. J.
,
3
(
1
), pp.
1
7
.
11.
Dong
,
Q.
,
Hu
,
B. Y.
,
Chen
,
S. Y.
, and
Gu
,
Y.
,
2012
, “
Engineering Design of a Multiple-Use Spherical Explosion Containment Vessel Subjected to Internal Blast Loading From 25 kg TNT High Explosive
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021205
.10.1115/1.4005397
12.
Dong
,
Q.
, and
Hu
,
B. Y.
,
2016
, “
Dynamic Behavior of Carbon Fiber Explosion Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011202
.10.1115/1.4030435
13.
Zhu
,
W. H.
,
1997
, “
Combining Analytical Method With Numerical Simulation to Obtain Blast Load on Chamber Wall Produced by an Explosive Charge
,”
J. Natl. Univ. Defense Technol.
,
19
(
6
), pp.
102
106
.
14.
Zhu
,
W. H.
,
Xue
,
H. L.
,
Zhou
,
G. Q.
, and Schleyer, G. K.,
1997
, “
Dynamic Response of Cylindrical Explosive Chambers to Internal Blast Loading Produced by a Concentrated Charge
,”
Int. J. Impact Eng.
,
19
(
9
), pp.
831
845
.10.1016/S0734-743X(97)00022-5
15.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Further Study on Strain Growth in Spherical Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
37
(
2
), pp.
196
206
.10.1016/j.ijimpeng.2009.09.001
16.
Dong
,
Q.
,
Li
,
Q. M.
,
Zheng
,
J. Y.
, and
Hu
,
B. Y.
,
2010
, “
Effects of Structural Perturbations on Strain Growth in Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011203
.10.1115/1.4000372
17.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Interactive Mechanisms Between the Internal Blast Loading and the Dynamic Elastic Response of Spherical Containment Vessels
,”
Int. J. Impact Eng.
,
37
(
4
), pp.
349
358
.10.1016/j.ijimpeng.2009.10.004
18.
Liu
,
W.
,
Zhang
,
Q.
,
Zhong
,
F.
,
Cheng
,
S.
,
Zhang
,
D.
, and
Yang
,
L.
,
2017
, “
Further Research on Mechanism of Strain Growth Caused by Superposition of Different Vibration Modes
,”
Int. J. Impact Eng.
,
104
, pp.
1
12
.10.1016/j.ijimpeng.2017.01.025
19.
Kubota
,
S.
,
Saburi
,
T.
,
Katoh
,
K.
,
Homae
,
T.
,
Ogata
,
Y.
, and
Iida
,
M.
,
2010
, “
Development of Compact Blast Containment Vessel for 10 kg Explosive
,”
Mater. Sci. Forum
,
638-642
, pp.
1047
1052
.10.4028/www.scientific.net/MSF.638-642.1047
20.
Sui
,
Y. G.
,
Zhang
,
D. Z.
,
Tang
,
S. Y.
,
Li
,
J.
, and
Lin
,
Q.
,
2015
, “
Theoretical Analysis of a Reactive Reinforcement Method for Cylindrical Explosion-Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011206
.10.1115/1.4027450
21.
Trabia
,
M. B.
,
O’Toole
,
B. J.
,
Thota
,
J.
, and
Matta
,
K. K.
,
2008
, “
Finite Element Modeling of a Lightweight Composite Blast Containment Vessel
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
011205
.10.1115/1.2826437
22.
Liu
,
Z.
,
Li
,
X.
,
Zhou
,
D.
,
Wang
,
X.
, and
Yan
,
H.
,
2024
, “
Influence of Water Cover on the Blast Resistance of Circular Plates
,”
ASME J. Pressure Vessel Technol.
,
146
(
6
), p.
061402
.10.1115/1.4066807
23.
Li
,
X. J.
,
Qin
,
X. Y.
,
Yan
,
H. H.
,
2010
, “
Base Constraint Forms of Hemispherical Shock-Waves Trap Structures
,”
Explos. Shock Waves
,
30
(
1
), pp.
7
11
.https://www.researchgate.net/publication/297299718_Base_constraint_forms_of_hemispherical_shock-waves_trap_structures
24.
Wang
,
Q.
,
Lin
,
C. J.
,
Li
,
Z. M.
, Lu, J. W., and Li, R.,
2021
, “
Vibration and Noise Characteristics of a Cylinder Body Caused by the Explosion in an Explosion Tank Under Negative Pressure
,”
J. Vib. Shock
,
40
(
6
), pp.
135
139
.https://jvs.sjtu.edu.cn/EN/Y2021/V40/I6/135
25.
Silnikov
,
M. V.
,
Chernyshov
,
M. V.
, and
Mikhaylin
,
A. I.
,
2015
, “
Blast Wave Parameters at Diminished Ambient Pressure
,”
Acta Astronaut.
,
109
, pp.
235
240
.10.1016/j.actaastro.2014.12.007
26.
Veldman
,
R. L.
,
Nansteel
,
M. W.
,
Chen
,
C. C.-T.
, and
Toner
,
B. A.
,
2017
, “
The Effect of Ambient Pressure on Blast Reflected Impulse and Overpressure
,”
Exp. Tech.
,
41
(
3
), pp.
227
236
.10.1007/s40799-017-0171-8
27.
Zhang
,
G. H.
,
Li
,
B. B.
,
Shen
,
F.
, Wang, S. Q., and Wang, H.,
2020
, “
Experimental Research on the Explosion Performance of Explosives Under Vacuum Conditions
,”
Chin. J. Explos. Propellants
,
43
(
3
), pp.
308
313
.
28.
Li
,
K. B.
,
Li
,
X. J.
,
Yan
,
H. H.
, Wang, X. H., and Yang, C. C.,
2018
, “
Numerical Simulation for Near-Field Characteristics of Air Explosion Under Different Degrees of Vacuum
,”
J. Vib. Shock
,
37
(
17
), pp.
270
276
.10.13465/j.cnki.jvs.2018.17.038
29.
Li
,
Z. M.
,
Wang
,
X. G.
,
Wang
,
Q.
, Lu, J. W., and Lin, C. J.,
2021
, “
Experimental Study on the Effect of Negative Pressure Environment on Explosion Shock Wave
,”
Chin. J. Explos. Propellants
,
44
(
1
), pp.
35
40
.10.14077/j.issn.1007-7812.202007025
30.
Zhou
,
D.
,
Li
,
X.
,
Wang
,
Y.
,
Wang
,
J.
,
Yan
,
H.
, and
Wang
,
X.
,
2023
, “
Research on Evolution of Shock Wave of Ground Explosion in Pit Type Explosion Containment Vessel
,”
Structures
,
50
, pp.
1164
1172
.10.1016/j.istruc.2023.02.082
31.
Gan
,
L.
,
Zong
,
Z.
,
Gao
,
C.
,
Li
,
M.
, and
Qian
,
H.
,
2022
, “
Influence of Shape of Cuboid Explosives on Response of Plates Subjected to Blast Loads
,”
Thin-Walled Struct.
,
174
, p.
109077
.10.1016/j.tws.2022.109077
32.
Cheng
,
S.
,
Li
,
X.
,
Wang
,
Y.
,
Zhou
,
D.
,
Yan
,
H.
, and
Wang
,
Q.
,
2021
, “
Analysis of Explosion Load in a Cylindrical Container With Sand Bottom
,”
ASME J. Pressure Vessel Technol.
,
143
(
3
), p.
031401
.10.1115/1.4048417
33.
Xiang
,
D. L.
,
Rong
,
J. L.
, and
Li
,
J.
,
2014
, “
Effect of Al/O Ratio on the Detonation Performance and Under Water Explosion of HMX-Based Aluminized Explosives
,”
Propellants, Explos., Pyrotech.
,
39
(
1
), pp.
65
73
.10.1002/prep.201300026
34.
Lin
,
L.
,
Zhi
,
X. D.
, Fan, F., Meng, S. J., and Su, J. J.,
2014
, “
Determination of Parameters of Johnson-Cook of Q235B Steel
,”
J. Vib. Shock
,
33
(
9
), pp.
153
158
.10.13465/j.cnki.jvs.2014.09.028
35.
Zhou
,
D.
,
Li
,
X.
,
Wang
,
Y.
,
Wang
,
J.
,
Yan
,
H.
, and
Wang
,
X.
,
2023
, “
Research on the Influence of Vacuum Degree on the Shock Wave in Pit Type Explosion Containment Vessel
,”
Structures
,
56
, p.
105033
.10.1016/j.istruc.2023.105033
36.
Tang
,
C.
, and
Hui
,
H. H.
,
2013
, “
Gaussian Curve Fitting Solution Based on Matlab
,”
Comput. Digital Eng.
,
41
(
8
), pp.
1262
1263
.
You do not currently have access to this content.