Abstract

In this paper, a method based on image recognition was proposed to detect the defects of polyethylene (PE) gas pipeline, especially the deformation due to the indentation. First, the pipeline -detection VGG (PD-VGG) model was established based on the convolutional neural network (CNN), and appropriate model parameters were optimized through model training. The defect recognition rate of the improved model can reach 94.76%. Following, the weighted average graying algorithm was used to separate the defects characterized by deformation. Then, an improved gamma correction algorithm was applied to achieve image enhancement, and the interference of impurities adhered on intersurface of pipeline was also removed by using multilayer filters. The edge detection of the defect image was completed by using the Canny operator, and following the screening between the target contour and the interference contour by using top-contour. Finally, the algorithm for minimum outer rectangle algorithm was used to fit the defect contour, and the eigenvalues of deformation defects were extracted. The results indicate that the above defect detection method can better extract the deformation contour of the dented pipeline. The high agreement with the experimental results provides a basis for the research of effectively recognizing whether the pipeline has undergone ductile failure only through profile detection of defects.

References

1.
Zha
,
S.
,
Lan
,
H.-Q.
, and
Huang
,
H.
,
2022
, “
Review on Lifetime Prediction of Polyethylene Pipes: Limitations and Trends
,”
Int. J. Pressure Vessels Piping
,
198
, p.
104663
.10.1016/j.ijpvp.2022.104663
2.
Zha
,
S.
, and
Lan
,
H.-Q.
,
2021
, “
Fracture Behavior of Pre-Cracked Polyethylene Gas Pipe Under Foundation Settlement by Extended Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
189
, p.
104270
.10.1016/j.ijpvp.2020.104270
3.
Duran
,
O.
,
Althoefer
,
K.
, and
Seneviratne
,
L. D.
,
2002
, “
Automated Sewer Inspection Using Image Processing and a Neural Classifier
,”
Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN'02
,
Honolulu, HI
, May 12–17, pp.
1126
1131.
10.1109/IJCNN.2002.1007652
4.
Niemueller
,
T.
,
2006
, “
Automatic Detection and Segmentation of Cracks in Underground Pipeline Images Seminar
,”
Medical Image Processing Summer Semester
,
Institut Für Medizinischen Informatik
,
Aachen, Germany
.
5.
Shinde
,
M. D.
, and
Wane
,
K.
,
2016
, “
An Application of Image Processing to Detect the Defects of Industrial Pipes
,”
Int. J. Adv. Res. Comput. Commun. Eng.
,
5
(
3
), pp.
979
981
.10.17148/IJARCCE.2016.53232
6.
Mashalizadeh
,
A. M.
,
Delavari
,
H.
, and
Razaghian
,
F.
,
2014
, “
Defect Detection in Drilling Pipes, Using Combination of Artificial Neural Networks and Machine Vision Techniques
,”
Comput. Sci., Eng.
,
2
(
8
), pp.
48
57
.https://www.semanticscholar.org/paper/Defect-Detection-in-Drilling-Pipes%2C-usingof-Neural-Mashalizadeh-Delavari/6f9ece44b3a58a7b47bea22a23d0eae78604c4fa
7.
Wang
,
Y.
,
Dai
,
Y.
,
Liu
,
X.
,
Liu
,
B.
, and
Guo
,
X.
,
2018
, “
Study on the Method of Colour Image Noise Reduction Based on Optimal Channel-Processing
,”
IET Image Process.
,
12
(
9
), pp.
1555
1559
.10.1049/iet-ipr.2017.0871
8.
Shao
,
J.
,
Du
,
D.
,
Chang
,
B.
, and
Shi
,
H.
,
2012
, “
Automatic Weld Defect Detection Based on Potential Defect Tracking in Real-Time Radiographic Image Sequence
,”
NDT E Int.
,
46
, pp.
14
21
.10.1016/j.ndteint.2011.10.008
9.
Zahran
,
O.
,
Kasban
,
H.
,
El-Kordy
,
M.
, and
El-Samie
,
F. E. A.
,
2013
, “
Automatic Weld Defect Identification From Radiographic Images
,”
NDT E Int.
,
57
, pp.
26
35
.10.1016/j.ndteint.2012.11.005
10.
Guo
,
X.
,
Tang
,
C.
,
Zhang
,
H.
, and
Chang
,
Z.
,
2012
, “
Automatic Thresholding for Defect Detection
,”
ICIC Express Lett.
,
6
(
1
), pp.
159
164
.10.1109/icig.2004.43
11.
Alaknanda, Anand
,
R. S.
, and
Kumar
,
P
,
2006
, “
Flaw Detection in Radiographic Weld Images Using Morphological Approach
,”
NDT E Int.
,
39
(
1
), pp.
29
33
.10.1016/j.ndteint.2005.05.005
12.
Motamedi
,
M.
,
Faramarzi
,
F.
, and
Duran
,
O.
,
2012
, “
New Concept for Corrosion Inspection of Urban Pipeline Networks by Digital Image Processing
,”
Conference of the IEEE Industrial Electronics Society
,
Montreal, QC, Canada
, Oct. 25–28, pp.
1551
1556
.10.1109/IECON.2012.6388510
13.
Khalifa
,
I.
,
Elsayed
,
A.
, and
Sayed
,
G.
,
2013
, “
A New Image -Based Model for Predicting Cracks in Sewer Pipes
,”
Int. J. Adv. Comp. Sci. Appl.
,
4
(
12
), pp.
65
71
.10.14569/IJACSA.2013.041210
14.
Kirstein
,
S.
,
Muller
,
K.
,
Walecki-Mingers
,
M.
, and
Deserno
,
T. M.
,
2012
, “
Robust Adaptive Flow Line Detection in Sewer Pipes
,”
Autom. Constr.
,
21
, pp.
24
31
.10.1016/j.autcon.2011.05.009
15.
Alam
,
M. A.
,
Ali
,
M. N.
,
Syed
,
A. A.
,
Sorif
,
N.
, and
Rahaman
,
M. A.
,
2015
, “
An Algorithm to Detect and Identify Defects of Industrial Pipes Using Image Processing
,”
Proceedings of the 8th International Conference on Software, Knowledge, Information Management and Applications
,
Dhaka, Bangladesh
, Dec. 18–20, pp.
1
6
.10.1109/SKIMA.2014.7083567
16.
Huynh
,
P.
,
Ross
,
R.
, and
Martchenko
,
A.
,
2015
, “
Dou-Edge Evaluation Algorithm for Automatic Thin Crack Detection in Pipelines
,”
Proceedings of IEEE International Conference on Signal and Image Processing Applications
,
Kuala Lumpur
,
Malaysia
, Oct. 19–21, pp.
191
196
.10.1109/ICSIPA.2015.7412188
17.
Mashford
,
J.
,
Rahilly
,
M.
,
Lane
,
B.
,
Marney
,
D.
, and
Burn
,
S.
,
2014
, “
Edge Detection in Pipe Images Using Classification of HAAR Wavelet Transforms
,”
Appl. Artif. Intell.
,
28
(
7
), pp.
675
689
.10.1080/08839514.2014.927689
18.
Wei
,
L. I.
,
Li
,
L.
, and
Da
,
J. Y.
,
2003
, “
Application of Wavelet and Laplacian Operator in Pipe Welding Flaw Image Detection
,”
Microcomputer Develop.
,
12
, pp.
71
74
.
19.
Altabey
,
W. A.
,
Kouritem
,
S. A.
,
Abouheaf
,
M. I.
, and
Nahas
,
N.
,
2022
, “
Research in Image Processing for Pipeline Crack Detection Applications
,” International Conference on Electrical, Computer, Communications and Mechatronics Engineering (
ICECCME
),
Maldives, Maldives
, Nov. 16–18, pp.
1
6.
10.1109/ICECCME55909.2022.9988417
20.
Su
,
T. C.
, and
Yang
,
M. D.
,
2014
, “
Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines
,”
Sensors
,
14
(
5
), pp.
8686
8704
.10.3390/s140508686
21.
Sinha
,
S. K.
, and
Fieguth
,
P. W.
,
2006
, “
Neuro-Fuzzy Network for the Classification of Buried Pipe Defects
,”
Autom. Constr.
,
15
(
1
), pp.
73
83
.10.1016/j.autcon.2005.02.005
22.
Zhou
,
A.
,
Zheng
,
H.
,
Li
,
M.
, and
Shao
,
W.
,
2020
, “
Defect Inspection Algorithm of Metal Surface Based on Machine Vision
,”
12th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA
,
Phuket, Thailand
, Feb. 28–29, pp.
45
49
.10.1109/ICMTMA50254.2020.00017
23.
Moselhi
,
O.
, and
Shehab-Eldeen
,
T.
,
1999
, “
Automated Detection of Surface Defects in Water and Sewer Pipes
,”
Autom. Constr.
,
8
(
5
), pp.
581
588
.10.1016/S0926-5805(99)00007-2
You do not currently have access to this content.