Abstract

One of the major considerations in the design and operation of heat exchangers is the flow-induced vibration (FIV). While there are multiple FIV excitation mechanisms, fluidelastic instability (FEI) is by far the most crucial mechanism as it can significantly compromise the structural integrity of the tube arrays. Traditionally, it was assumed that FEI could only happen in the transverse direction. However, recent tube failures in replacement steam generators have demonstrated that FEI can occur in the streamwise direction and be equally devastating. This new phenomenon has sparked intensive research to uncover its nature. An intensive experimental research program was launched to investigate the geometrical impact of various tube array types on the FEI in both the transverse and streamwise directions. To that end, the stability of a single flexible tube and multiple flexible tubes in tube arrays was tested. The study will focus on the stability behavior of parallel triangular arrays at pitch ratios in the range of 1.25–1.70. A comparison between the available experimental data and the current results was presented. The current results reveal that the stability threshold is sensitive to the pitch-to-diameter ratio of the array and the number of flexible tubes, especially in the streamwise direction.

References

1.
Ziada
,
S.
,
Hassan
,
M.
, and
Gelbe
,
H.
,
2018
,
Vibrations in Heat Exchanger Tube Bundles In VDI-Wärmeatlas. Springer Reference Technique
,
Springer Vieweg Berlin
,
Heidelberg, Germany
.
2.
Païdoussis
,
M. P.
,
1983
, “
A Review of Flow-Induced Vibrations in Reactors and Reactor Components
,”
Nucl. Eng. Des.
,
74
(
1
), pp.
31
60
.10.1016/0029-5493(83)90138-3
3.
Weaver
,
D. T.
, and
Fitzpatrick
,
J.
,
1988
, “
A Review of Cross-Flow Induced Vibrations in Heat Exchanger Tube Arrays
,”
J. Fluids Struct.
,
2
(
1
), pp.
73
93
.10.1016/S0889-9746(88)90137-5
4.
Price
,
S.
,
1995
, “
A Review of Theoretical Models for Fluidelastic Instability of Cylinder Arrays in Cross-Flow
,”
J. Fluids Struct.
,
9
(
5
), pp.
463
518
.10.1006/jfls.1995.1028
5.
Pettigrew
,
M.
, and
Taylor
,
C.
,
2003
, “
Vibration Analysis of Shell-and-Tube Heat Exchangers: An Overview—Part 1: Flow, Damping, Fluidelastic Instability
,”
J. Fluids Struct.
,
18
(
5
), pp.
469
483
.10.1016/j.jfluidstructs.2003.08.007
6.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1991
, “
Fluidelastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
242
256
.10.1115/1.2928752
7.
Schröder
,
K.
, and
Gelbe
,
H.
,
1999
, “
New Design Recommendations for Fluidelastic Instability in Heat Exchanger Tube Bundles
,”
J. Fluids Struct.
,
13
(
3
), pp.
361
379
.10.1006/jfls.1999.0208
8.
ASME
,
1998
, “
ASME Boiler and Pressure Vessel Code, Section III, Non-Mandatory Appendix N, Subarticle N1300, Flow-Induced Vibration of Tubes and Tube Banks
,” ASME, New York.
9.
Elhelaly
,
A.
,
Hassan
,
M.
,
Mohany
,
A.
, and
Moussa
,
S. E.
,
2020
, “
Effect of the Flow Approach Angle on the Dynamics of Loosely-Supported Tube Arrays
,”
Nucl. Eng. Des.
,
368
, p.
110802
.10.1016/j.nucengdes.2020.110802
10.
Elhelaly
,
A.
,
Hassan
,
M.
,
Weaver
,
D.
, and
Moussa
,
S. E.
,
2022
, “
Effect of Pitch Ratio and Flat Bar Support Conditions on FEI Threshold for Low MDP Parallel Triangular Array – Single-Phase Water-Flow
,”
ASME
Paper No. PVP2022-86694.10.1115/PVP2022-86694
11.
Sadek
,
O.
,
Mohany
,
A.
, and
Hassan
,
M.
,
2021
, “
The Prediction of Fluidelastic Forces in Triangular Tube Bundles Subjected to a Two-Phase Flow: The Effect of the Flow Approach Angle
,”
J Fluids Struct.
,
106
, p.
103386
.10.1016/j.jfluidstructs.2021.103386
12.
Hassan
,
M.
, and
Mohany
,
A.
,
2011
, “
A Numerical Characterization of Flow-Induced Vibration and Fretting Wear Potential in Nuclear Steam Generator Tube Bundles
,”
ASME
Paper No. PVP2011-57182.10.1115/PVP2011-57182
13.
Mohany
,
A.
, and
Janzen
,
V.
,
2009
, “
Flow-Induced Vibration and Fretting-Wear Performance of CANDU™ Steam Generator U-Tubes: Instrumentation
,”
ASME
Paper No. PVP2009-78076.10.1115/PVP2009-78076
14.
Arafa
,
N.
, and
Mohany
,
A.
,
2015
, “
Aeroacoustic Response of a Single Cylinder With Straight Circular Fins in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051301
.10.1115/1.4029658
15.
Arafa
,
N.
, and
Mohany
,
A.
,
2019
, “
Wake Structures and Acoustic Resonance Excitation of a Single Finned Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
86
, pp.
70
93
.10.1016/j.jfluidstructs.2019.01.025
16.
Shaaban
,
M.
, and
Mohany
,
A.
,
2020
, “
Experimental Study of the Self-Excited Resonance Effect on the Dynamic Lift and Flow Structure Around Inline Cylinders
,”
J. Fluids Struct.
,
96
, p.
103015
.10.1016/j.jfluidstructs.2020.103015
17.
Mohany
,
A.
,
Alziadeh
,
M.
, and
Hassan
,
M.
,
2023
, “
Vorticity Shedding and Acoustic Resonance Excitation of a Square Tube Array: Effect of Flow Approach Angle
,”
ASME J. Pressure Vessel Technol.
,
145
(
1
), p.
011401
.10.1115/1.4055158
18.
Connors
,
H.
, Jr.
,
1978
, “
Fluidelastic Vibration of Heat Exchanger Tube Arrays
,”
ASME J. Mech. Des.
,
100
(
2
), pp.
347
353
.10.1115/1.3453921
19.
Weaver
,
D.
, and
Schneider
,
W.
,
1983
, “
The Effect of Flat Bar Supports on the Crossflow Induced Response of Heat Exchanger U-Tubes
,”
ASME J. Eng. Power
,
105
(
4
), pp.
775
781
.10.1115/1.3227481
20.
Weaver
,
D. S.
, and
Koroyannakis
,
D.
,
1983
, “
Flow-Induced Vibrations of Heat Exchanger U-Tubes: A Simulation to Study the Effects of Asymmetric Stiffness
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
105
(
1
), pp.
67
75
.10.1115/1.3269069
21.
Mureithi
,
N. W.
,
Zhang
,
C.
,
Ruël
,
M.
, and
Pettigrew
,
M. J.
,
2005
, “
Fluidelastic Instability Tests on an Array of Tubes Preferentially Flexible in the Flow Direction
,”
J. Fluids Struct.
,
21
(
1
), pp.
75
87
.10.1016/j.jfluidstructs.2005.03.010
22.
Violette
,
R.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2006
, “
Fluidelastic Instability of an Array of Tubes Preferentially Flexible in the Flow Direction Subjected to Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
128
(
1
), pp.
148
159
.10.1115/1.2138064
23.
Hirota
,
K.
,
Morita
,
H.
,
Hirai
,
J.
,
Iwasaki
,
A.
,
Utsumi
,
S.
,
Shimamura
,
K.
, and
Kawakami
,
R.
,
2013
, “
Investigation on In-Flow Fluidelastic Instability of an Array of Tubes
,”
ASME
Paper No. PVP2013-97163.10.1115/PVP2013-97163
24.
Janzen
,
V.
,
Han
,
Y.
, and
Pettigrew
,
M.
,
2009
, “
Design Specifications to Ensure Flow-Induced Vibration and Fretting-Wear Performance in CANDU™ Steam Generators and Heat Exchangers
,”
ASME
Paper No. PVP2009-78078.10.1115/PVP2009-78078
25.
Nakamura
,
T.
,
Nishimura
,
K.
,
Fujita
,
Y.
, and
Kohara
,
C.
,
2011
, “
Study on In-Flow Vibration of Cylinder Arrays Caused by Cross Flow
,”
ASME
Paper No. PVP2011-57068.10.1115/PVP2011-57068
26.
Nakamura
,
T.
,
Fujita
,
Y.
, and
Sumitani
,
T.
,
2014
, “
Study on In-Flow Fluidelastic Instability of Triangular Tube Arrays Subjected to Air Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
136
(
5
), p.
051302
.10.1115/1.4027618
27.
SONGS-Report
,
2013
, “
San Onofre Nuclear Generating Station, Unit 2 and 3 Replacement Steam Generators
,” Root Cause Analysis Report for Tube Wear Identified in the Unit 2 and Unit 3 Steam Generators of San Onofre Nuclear Generating Station, (Redacted) Mitsubishi Heavy Industries, UES-20120254 Rev 0, U.S. NRC.
28.
Hassan
,
M.
, and
Weaver
,
D.
,
2017
, “
Pitch and Mass Ratio Effects on Transverse and Streamwise Fluidelastic Instability in Parallel Triangular Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061302
.10.1115/1.4037717
29.
Soper
,
B.
,
1983
, “
The Effect of Tube Layout on the Fluid-Elastic Instability of Tube Bundles in Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
105
(
4
), pp.
744
750
.10.1115/1.3245657
30.
Hassan
,
M.
, and
Weaver
,
D.
,
2022
, “
Pitch and Pattern Effects on Streamwise Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
144
(
4
), p.
041403
.10.1115/1.4052399
31.
Rehman
,
S. A.
,
Hassan
,
M.
,
El Bouzidi
,
S.
,
Weaver
,
D.
, and
Elbanhawy
,
O.
,
2021
, “
Numerical Prediction of the Phase Difference in Tube Bundles Experiencing Streamwise Fluidelastic Instability
,”
ASME
Paper No. PVP2021-63798.10.1115/PVP2021-63798
32.
Tanaka
,
H.
,
Tanaka
,
K.
,
Shimizu
,
F.
, and
Takahara
,
S.
,
2002
, “
Fluidelastic Analysis of Tube Bundle Vibration in Cross-Flow
,”
J. Fluids Struct.
,
16
(
1
), pp.
93
112
.10.1006/jfls.2001.0411
33.
Chen
,
S.
,
1983
, “
Instability Mechanisms and Stability Criteria of a Group of Circular Cylinders Subjected to Cross-Flow. Part I: Theory
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
105
(
1
), pp.
51
58
.10.1115/1.3269066
34.
Chen
,
S. S.
,
1983
, “
Instability Mechanisms and Stability Criteria of a Group of Circular Cylinders Subjected to Cross-Flow—Part 2: Numerical Results and Discussions
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
105
(
2
), pp.
253
260
.10.1115/1.3269095
35.
Nakamura
,
T.
,
Fujita
,
Y.
,
Sumitani
,
T.
, and
Hagiwara
,
S.
,
2013
, “
Study on In-Flow Fluidelastic Instability of Circular Cylinders Caused by Air Cross Flow (Triangular Arrays)
,”
ASME
Paper No. PVT-13-1175.10.1115/PVT-13-1175
36.
Hassan
,
M.
, and
Weaver
,
D. S.
,
2016
, “
Modeling of Streamwise and Transverse Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051304
.10.1115/1.4032817
37.
Hartlen
,
R.
,
1974
,
Wind-Tunnel Determination of Fluid-Elastic-Vibration Thresholds for Typical Het-Exchanger Tube Pattens
,
Ontario Hydro Research Division
, Toronto, ON, Canada.
38.
Chen
,
S. S.
,
1987
,
Flow-Induced Vibration of Circular Cylindrical Structures
,
Hemisphere Publishing
,
New York
.
You do not currently have access to this content.