Abstract

Predicting creep crack growth (CCG) of flaws found during operation in high-temperature alloy components is essential for assessing the remaining lifetime of those components. While defect assessment procedures are available for this purpose in design codes, these are limited in their range of applicability. This study assesses the application of a local damage-based finite element methodology as a more general technique for the prediction of CCG at high temperatures on a variety of structural configurations. Numerical results for stainless steel 316H, which are validated against experimental data, show the promise of this approach. This integration of continuum damage mechanics (CDM) based methodologies, together with adequate inelastic models; into assessment procedures can therefore inform the characterization of CCG under complex operating conditions while avoiding excessive conservatism. This article shows that such modeling frameworks can be calibrated to experimental data and used to demonstrate that the degree of triaxiality ahead of a growing creep crack affects its rate of growth. The framework is also successfully employed in characterizing CCG in realistic reactor pressure vessel geometry under an arbitrary loading condition. These results are particularly relevant to the nuclear power industry for defect assessment and inspections as part of codified practices of structural components with flaws in high-temperature reactors.

References

1.
Grover
,
P. S.
, and
Saxena
,
A.
,
1995
, “
Creep Crack Growth in Power Plant Materials
,”
Integr. Eng. Compon.
,
20
(
1
), pp.
53
85
.10.1007/BF02747284
2.
Guidez
,
J.
,
Coz
,
P. L.
,
Martin
,
L.
,
Mariteau
,
P.
, and
Dupraz
,
R.
,
2005
, “
Lifetime Extension of the Phenix Plant
,”
Nucl. Technol.
,
150
(
1
), pp.
37
43
.10.13182/NT05-A3603
3.
Dean
,
D. W.
, and
Johns
,
J. G.
,
2015
, “
Structural Integrity Issues in High Temperature Nuclear Plant: Experience From Operation of the UK Advanced Gas Cooled Reactor Fleet
,”
Transactions of SMiRT-23,
Manchester, UK, Aug. 10–14, Paper No. 459.https://repository.lib.ncsu.edu/bitstream/handle/1840.20/33886/SMiRT-23_Paper_459.pdf?sequence=1&isAllowed=y
4.
Townsend
,
R. D.
,
2000
, “
Review of Service Problems During High Temperature Operation
,”
Institute of Materials, Materials for High Power Generation and Process Plant Applications (UK)
, London, UK, pp.
199
223
.
5.
Skelton
,
R. P.
, and
Gandy
,
D.
,
2008
, “
Creep–Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater. High Temp.
,
25
(
1
), pp.
27
54
.10.3184/096034007X300494
6.
Mehmanparast
,
A.
,
Davies
,
C. M.
,
Webster
,
G. A.
, and
Nikbin
,
K. M.
,
2014
, “
Creep Crack Growth Rate Predictions in 316H Steel Using Stress Dependent Creep Ductility
,”
Mater. High Temp.
,
31
(
1
), pp.
84
94
.10.1179/0960340913Z.00000000011
7.
Webster
,
G. A.
,
Davies
,
C. M.
, and
Nikbin
,
K. M.
,
2010
, “
Assessment of Creep Crack Growth Due to Stress Relief
,”
Int. J. Solids Struct.
,
47
(
7–8
), pp.
881
886
.10.1016/j.ijsolstr.2009.11.018
8.
Jazaeri
,
H.
,
Bouchard
,
P. J.
,
Hutchings
,
M. T.
,
Mamun
,
A. A.
, and
Heenan
,
R. K.
,
2016
, “
Study of Cavities in a Creep Crack Growth Test Specimen
,”
Procedia Struct. Integr.
,
2
, pp.
942
949
.10.1016/j.prostr.2016.06.121
9.
Petkov
,
M. P.
,
Elmukashfi
,
E.
, and
Cocks
,
A. C. F.
,
2022
, “
Multi-Scale Modelling of Creep Cavity Nucleation and Growth in Polycrystalline Type 316 Stainless Steel
,”
Philos. Mag.
,
102
(
23
), pp.
2362
2411
.10.1080/14786435.2022.2121867
10.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1982
, “
On Creep Fracture by Void Growth
,”
Prog. Mater. Sci.
,
27
(
3–4
), pp.
189
244
.10.1016/0079-6425(82)90001-9
11.
Tang
,
S.
,
Guo
,
T. F.
, and
Cheng
,
L.
,
2008
, “
C*-Controlled Creep Crack Growth by Grain Boundary Cavitation
,”
Acta Mater.
,
56
(
18
), pp.
5293
5303
.10.1016/j.actamat.2008.06.037
12.
Dean
,
D. W.
, and
Gladwin
,
D. N.
,
2007
, “
Creep Crack Growth Behaviour of Type 316H Steels and Proposed Modifications to Standard Testing and Analysis Methods
,”
Int. J. Pressure Vessels Piping
,
84
(
6
), pp.
378
395
.10.1016/j.ijpvp.2007.01.001
13.
Riedel
,
H.
,
1981
, “
Creep Deformation at Crack Tips in Elastic-Viscoplastic Solids
,”
J. Mech. Phys. Solids
,
29
(
1
), pp.
35
49
.10.1016/0022-5096(81)90014-4
14.
Holdsworth
,
S. R.
,
1998
, “
Material Data Requirements for Assessing Defect Integrity at High Temperatures
,”
High Temperature Power Plant and Process Plant Applications Session as Held at the Materials Congress'98
, Cirencester, UK, Apr. 6–8, pp.
177
197
.
15.
Spindler
,
M. W.
, and
Cotton
,
C. C.
,
1998
, “
Creep-Fatigue Crack Growth in Type 316H Stainless Steel Through a Zone of Tensile Residual Stress
,”
Mater. at High Temp.
,
15
(
2
), pp.
117
121
.10.1080/09603409.1998.11833489
16.
ASTM
,
2015
,
Standard Test Method for Measurement of Creep Crack Growth Times in Metals
,
ASTM International, Philadelphia, PA, Standard No
.
ASTM E1457-15
.
17.
Hadley, I., 2011, “3-Fracture Assessment Methods for Welded Structures,”
Fracture and Fatigue of Welded Joints and Structures
, Woodhead Publishing Limited TWI, Cambridge, UK, pp.
60
90
.10.1533/9780857092502.1.60
18.
Dean
,
D. W.
,
Allport
,
L. C.
, and
Chevalier
,
M. J.
,
2015
, “
The R5 Procedures for Assessing the High Temperature Response of Structures: Current Status and Recent Developments
,”
Transactions of SMiRT-23
,
Manchester, UK
, Aug. 10–14, Paper No. 458.https://repository.lib.ncsu.edu/bitstream/handle/1840.20/33892/SMiRT-23_Paper_458.pdf?sequence=1
19.
Anderson
,
T. L.
, and
Osage
,
D. A.
,
2000
, “
API 579: A Comprehensive Fitness-for-Service Guide
,”
Int. J. Pressure Vessels Piping
,
77
(
14–15
), pp.
953
963
.10.1016/S0308-0161(01)00018-7
20.
Grunloh
,
H. J.
,
Ryder
,
R. H.
,
Gattuso
,
A.
,
Bloom
,
J. M.
,
Lee
,
D. R.
,
Schultz
,
C. C.
,
Sutherland
,
D. D.
,
Harris
,
D. O.
, and
Dedhia
,
D. D.
,
1992
, “
An Integrated Approach to Life Assessment of Boiler Pressure Parts
,”
BLESS Code User's Manual Life Assessment Guidelines. EPRI Research Project
, Vol.
4
, Palo Alto, CA, p.
2253
.
21.
Brust
,
F.
,
Sallaberry
,
C.
, and
Messner
,
M.
,
2022
, “
High Temperature Flaw Evaluation Code Case: Technical Basis and Examples
,”
ASME
Paper No. PVP2022-85957.10.1115/PVP2022-85957
22.
AFCEN RCC-MRx,
2013
,
Code of Design and Construction Rules for Mechanical Component in Nuclear Installations
,
AFCEN
,
Courbevoie, France
.
23.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(
3
), pp.
361
364
.10.1115/1.4011547
24.
Griffith
,
A. A.
, VI.
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London. Ser. A
,
221
(
582–593
), pp.
163
198
.10.1098/rsta.1921.0006
25.
AFCEN,
2016
, “
RSE-M: Regles de Surveillance en Exploitation Des Materiels Mecaniques Des Ilots Nucleaires Rep
,” (In-Service Inspection Rules for Mechanical Components of PWR Nuclear Islands), AFCEN, Lyon, France, Report.
26.
EDF Energy,
2015
, “
R6: Assessment of the Integrity of Structures Containing Defects, Revision 4, With Amendments to Amendment 11
,” EDF Energy, Gloucester, UK, Report.
27.
Scarth
,
D. A.
,
Kim
,
Y. J.
, and
Vanderglas
,
M. L.
,
1985
, “
A Critical Review on the Application of Elastic-Plastic Fracture Mechanics to Nuclear Pressure Vessel and Piping Systems
,” Ontario Hydro Research Division, Toronto, ON, Canada, Report No 85-257-K.
28.
Hadley
,
I.
,
2018
, “
BS 7910:2013 in Brief
,”
Int. J. Pressure Vessels Piping
,
165
, pp.
263
269
.10.1016/j.ijpvp.2018.07.010
29.
Rice
,
J. R.
, and
Rosengren
,
G. F.
,
1968
, “
Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
1
12
.10.1016/0022-5096(68)90013-6
30.
Hutchinson
,
J. W.
,
1968
, “
Singular Behaviour at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
13
31
.10.1016/0022-5096(68)90014-8
31.
Larrosa
,
N. O.
,
Ainsworth
,
R. A.
,
Akid
,
R.
,
Budden
,
P. J.
,
Davies
,
C. M.
,
Hadley
,
I.
,
Tice
,
D. R.
,
Turnbull
,
A.
, and
Zhou
,
S.
,
2017
, “
Mind the Gap'in Fitness-for-Service Assessment Procedures-Review and Summary of a Recent Workshop
,”
Int. J. Pressure Vessels Piping
,
158
, pp.
1
19
.10.1016/j.ijpvp.2017.09.004
32.
Grueter
,
L.
, and
Zeibig
,
H.
,
1980
, “
Creep Crack Growth in Austenitic Steels–Applicability of Fracture Mechanics Parameters
,”
Materialwiss. Werkstofftech.
,
11
(
12
), pp.
423
434
.10.1002/mawe.19800111203
33.
Begley
,
J. A.
, and
Landes
,
J. D.
,
1976
,
A Fracture Mechanics Approach to Creep Crack Growth
,
ASTM International
, Providence, RI.
34.
Nikbin
,
K. M.
,
Webster
,
G. A.
, and
Turner
,
C. E.
,
1976
, “
Relevance of Nonlinear Fracture Mechanics to Creep Cracking
,”
Cracks and Fracture
,
ASTM International
, West Conshohocken, PA.
35.
Mehmanparast
,
A.
,
Davies
,
C. M.
,
Dean
,
D. W.
, and
Nikbin
,
K. M.
,
2013
, “
The Influence of Pre-Compression on the Creep Deformation and Failure Behaviour of Type 316H Stainless Steel
,”
Eng. Fract. Mech.
,
110
, pp.
52
67
.10.1016/j.engfracmech.2013.08.006
36.
Hyde
,
T. H.
,
1988
, “
Creep Crack Growth in 316 Stainless Steel at 600 °C
,”
High Temp. Technol.
,
6
(
2
), pp.
51
61
.10.1080/02619180.1988.11753380
37.
Nikbin
,
K. M.
,
Smith
,
D. J.
, and
Webster
,
G. A.
,
1984
, “
Prediction of Creep Crack Growth From Uniaxial Creep Data
,”
Proc. R. Soc. London A Math. Phys. Sci
.
,
396
(
1810
), pp.
183
197
.
38.
ASTM
,
1986
, “
Creep Crack Growth Under Non-Steady-State Conditions
,”
Fracture Mechanics: Seventeenth Volume: Seventeenth National Symposium on Fracture Mechanics on Fracture Mechanics Sponsored ASTM Committee E-24 on Fracture Testing
,
Seventeenth Volume
, Albany, NY, Aug. 7–9, 1984,
ASTM International
,
ASTMSTP905,
p.
185
.
39.
Ainsworth
,
R.
,
Dean
,
D.
, and
Budden
,
P.
,
2011
, “
Creep Crack Growth Under Complex Loading
,”
Creep-Fatigue Interactions: Test Methods and Models
,
ASTM International, West Conshohocken, PA
.
40.
Davies
,
C. M.
,
Dean
,
D. W.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
,
2007
, “
Interpretation of Creep Crack Initiation and Growth Data for Weldments
,”
Eng. Fract. Mech.
,
74
(
6
), pp.
882
897
.10.1016/j.engfracmech.2006.08.010
41.
Nibkin
,
K. M.
, and
Radon
,
J. C.
,
1997
, “
Meso-Fracture of Creep Crack Initiation and Growth of Engineering Materials
,”
Theor. Appl. Fract. Mech.
,
26
(
1
), pp.
41
45
.10.1016/S0167-8442(96)00033-X
42.
Elmukashfi
,
E.
, and
Cocks
,
A. C. F.
,
2021
, “
A Theoretical and Computational Investigation of Mixed Mode Creep Crack Growth Along an Interface
,”
Int. J. Fract.
,
229
(
2
), pp.
125
159
.10.1007/s10704-021-00534-x
43.
Ainsworth
,
R. A.
, and
Budden
,
P. J.
,
1990
, “
Crack Tip Fields Under Non-Steady Creep Conditions I. estimates of the Amplitude of the Fields
,”
Fatigue Fract. Eng. Mater. Struct.
,
13
(
3
), pp.
263
276
.10.1111/j.1460-2695.1990.tb00598.x
44.
British Energy,
2003
, “
R5: Assessment Procedure for the High Temperature Response of Structures
,” British Energy, Gloucester, UK, Report.
45.
Brust
,
F. W.
,
Wilkowski
,
G. M.
,
Krishnaswamy
,
P.
, and
Wichman
,
K.
,
2010
, “
Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds
,”
ASME Standards Technology, LLC
, New York, Standard No. DOE/ID--14712-8.
46.
Ainsworth
,
R. A.
,
2006
, “
R5 Procedures for Assessing Structural Integrity of Components Under Creep and Creep–Fatigue Conditions
,”
Int. Mater. Rev.
,
51
(
2
), pp.
107
126
.10.1179/174328006X79463
47.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
,
2013
,
High Temperature Component Life Assessment
,
Springer Science & Business Media, London, UK
.
48.
Baker
,
A. J.
,
O'Donnell
,
M. P.
, and
Dean
,
D. W.
,
2003
, “
Use of the R5 Volume 4/5 Procedures to Assess Creep–Fatigue Crack Growth in a 316 L (N) Cracked Plate at 650 °C
,”
Int. J. Pressure Vessels Piping
,
80
(
7–8
), pp.
481
488
.10.1016/S0308-0161(03)00102-9
49.
Riedel
,
H.
, and
Rice
,
J. R.
,
1980
, “
Tensile Cracks in Creeping Solids
,”
ASTM STP
,
700
, pp.
112
130
.10.1520/STP36967S
50.
Hutchinson
,
J. W.
,
1983
, “
Constitutive Behavior and Crack Tip Fields for Materials Undergoing Creep-Constrained Grain Boundary Cavitation
,”
Acta Metall.
,
31
(
7
), pp.
1079
1088
.10.1016/0001-6160(83)90204-3
51.
Kachanov
,
L.
,
1986
,
Introduction to Continuum Damage Mechanics
, Vol.
10
,
Springer Science & Business Media, Dordrecht, The Netherlands
.
52.
Chang
,
T. C.
,
Popelar
,
C. H.
, and
Staab
,
G. H.
,
1987
, “
Creep Crack Growth in an Elastic-Creeping Material Part II: Mode I
,”
Int. J. Fract.
,
33
(
1
), pp.
31
45
.10.1007/BF00034897
53.
Bassani
,
J. L.
, and
Hawk
,
D. E.
,
1990
, “
Influence of Damage on Crack-Tip Fields Under Small-Scale-Creep Conditions
,”
Non-Linear Fracture: Recent Advances
,
W. G.
Knauss
and
A. J.
Rosakis
, eds.,
Springer
, Dordrecht, The
Netherlands,
pp.
157
172
.
54.
Murakami
,
S.
,
Kawai
,
M.
, and
Rong
,
H.
,
1988
, “
Finite Element Analysis of Creep Crack Growth by a Local Approach
,”
Int. J. Mech. Sci.
,
30
(
7
), pp.
491
502
.10.1016/0020-7403(88)90003-3
55.
Yatomi
,
M.
, and
Nikbin
,
K. M.
,
2014
, “
Numerical Prediction of Creep Crack Growth in Different Geometries Using Simplified Multiaxial Void Growth Model
,”
Mater. High Temp.
,
31
(
2
), pp.
141
147
.10.1179/1878641314Y.0000000008
56.
Hall
,
D. E.
,
McDowell
,
D. L.
, and
Saxena
,
A.
,
2002
, “
Crack Tip Parameters for Creep-Brittle Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(
4
), pp.
387
401
.10.1046/j.1460-2695.1998.00542.x
57.
Onck
,
P.
, and
van der Giessen
,
E.
,
1998
, “
Growth of an Initially Sharp Crack by Grain Boundary Cavitation
,”
J. Mech. Phys. Solids
,
47
(
1
), pp.
99
139
.10.1016/S0022-5096(98)00078-7
58.
Hyde
,
C. J.
,
Hyde
,
T. H.
,
Sun
,
W.
, and
Becker
,
A. A.
,
2010
, “
Damage Mechanics Based Predictions of Creep Crack Growth in 316 Stainless Steel
,”
Eng. Fract. Mech.
,
77
(
12
), pp.
2385
2402
.10.1016/j.engfracmech.2010.06.011
59.
Oh
,
C.-S.
,
Kim
,
N.-H.
,
Kim
,
Y.-J.
,
Davies
,
C.
,
Nikbin
,
K.
, and
Dean
,
D.
,
2011
, “
Creep Failure Simulations of 316H at 550 °C: Part I–a Method and Validation
,”
Eng. Fract. Mech.
,
78
(
17
), pp.
2966
2977
.10.1016/j.engfracmech.2011.08.015
60.
Wen
,
J.-F.
,
Tu
,
S.-T.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2013
, “
Simulations of Creep Crack Growth in 316 Stainless Steel Using a Novel Creep-Damage Model
,”
Eng. Fract. Mech.
,
98
, pp.
169
184
.10.1016/j.engfracmech.2012.12.014
61.
Spindler
,
M. W.
,
2004
, “
The Multiaxial Creep Ductility of Austenitic Stainless Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
273
281
.10.1111/j.1460-2695.2004.00732.x
62.
Wen
,
J.-F.
,
Tu
,
S.-T.
,
Xuan
,
F.-Z.
,
Zhang
,
X.-W.
, and
Gao
,
X.-L.
,
2016
, “
Effects of Stress Level and Stress State on Creep Ductility: Evaluation of Different Models
,”
J. Mater. Sci. Technol.
,
32
(
8
), pp.
695
704
.10.1016/j.jmst.2016.02.014
63.
Kim
,
N.-H.
,
Oh
,
C.-S.
,
Kim
,
Y.-J.
,
Yoon
,
K.-B.
, and
Ma
,
Y.-H.
,
2011
, “
Comparison of Fracture Strain Based Ductile Failure Simulation With Experimental Results
,”
Int. J. Pressure Vessels Piping
,
88
(
10
), pp.
434
447
.10.1016/j.ijpvp.2011.07.006
64.
Kim
,
N.-H.
,
Oh
,
C.-S.
,
Kim
,
Y.-J.
,
Davies
,
C. M.
,
Nikbin
,
K.
, and
Dean
,
D. W.
,
2013
, “
Creep Failure Simulations of 316H at 550 °C: Part II–Effects of Specimen Geometry and Loading Mode
,”
Eng. Fract. Mech.
,
105
, pp.
169
181
.10.1016/j.engfracmech.2013.04.001
65.
Kimura
,
M.
,
Takaishi
,
T.
,
Alfat
,
S.
,
Nakano
,
T.
, and
Tanaka
,
Y.
,
2021
, “
Irreversible Phase Field Models for Crack Growth in Industrial Applications: Thermal Stress, Viscoelasticity, Hydrogen Embrittlement
,”
SN Appl. Sci.
,
3
(
9
), pp.
695
704
.10.1007/s42452-021-04593-6
66.
Khalil
,
Z.
,
Elghazouli
,
A. Y.
, and
Martínez-Pañeda
,
E.
,
2022
, “
A Generalised Phase Field Model for Fatigue Crack Growth in Elastic–Plastic Solids With an Efficient Monolithic Solver
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114286
.10.1016/j.cma.2021.114286
67.
Kumar
,
M.
, and
Singh
,
I. V.
,
2020
, “
Numerical Investigation of Creep Crack Growth in Plastically Graded Materials Using C(t) and XFEM
,”
Eng. Fract. Mech.
,
226
, p.
106820
.10.1016/j.engfracmech.2019.106820
68.
Pandey
,
V. B.
,
Singh
,
I. V.
, and
Mishra
,
B. K.
,
2023
, “
A New Creep-Fatigue Interaction Damage Model and CDM-XFEM Framework for Creep-Fatigue Crack Growth Simulations
,”
Theor. Appl. Fract. Mech.
,
124
, p.
103740
.10.1016/j.tafmec.2022.103740
69.
Jiang
,
W.
,
Spencer
,
B. W.
, and
Dolbow
,
J. E.
,
2020
, “
Ceramic Nuclear Fuel Fracture Modeling With the Extended Finite Element Method
,”
Eng. Fract. Mech.
,
223
, p.
106713
.10.1016/j.engfracmech.2019.106713
70.
Tourret
,
D.
,
Liu
,
H.
, and
Llorca
,
J.
,
2022
, “
Phase-Field Modeling of Microstructure Evolution: Recent Applications, Perspectives and Challenges
,”
Prog. Mater. Sci.
,
123
, p.
100810
.10.1016/j.pmatsci.2021.100810
71.
Lindsay
,
A. D.
,
Gaston
,
D. R.
,
Permann
,
C. J.
,
Miller
,
J. M.
,
Andrš
,
D.
,
Slaughter
,
A. E.
,
Kong
,
F.
, et al.,
2022
, “
2.0 - MOOSE: Enabling Massively Parallel Multiphysics Simulation
,”
SoftwareX
,
20
, p.
101202
.10.1016/j.softx.2022.101202
72.
Permann
,
C. J.
,
Gaston
,
D. R.
,
Andrš
,
D.
,
Carlsen
,
R. W.
,
Kong
,
F.
,
Lindsay
,
A. D.
,
Miller
,
J. M.
,
Peterson
,
J. W.
,
Slaughter
,
A. E.
,
Stogner
,
R. H.
, and
Martineau
,
R. C.
,
2020
, “
MOOSE: Enabling Massively Parallel Multiphysics Simulation
,”
SoftwareX
,
11
, p.
100430
.10.1016/j.softx.2020.100430
73.
Rashid
,
M. M.
,
1993
, “
Incremental Kinematics for Finite Element Applications
,”
Int. J. Numer. Methods Eng.
,
36
(
23
), pp.
3937
3956
.10.1002/nme.1620362302
74.
Tallman
,
A. E.
,
Kumar
,
M. A.
,
Castillo
,
A.
,
Wen
,
W.
,
Capolungo
,
L.
, and
Tomé
,
C. N.
,
2020
, “
Data-Driven Constitutive Model for the Inelastic Response of Metals: Application to 316H Steel
,”
Integr. Mater. Manuf. Innov.
,
9
(
4
), pp.
339
357
.10.1007/s40192-020-00181-5
75.
Messner
,
M. C.
,
Phan
,
V.-T.
, and
Sham
,
T.-L.
,
2018
, “
A Unified Inelastic Constitutive Model for the Average Engineering Response of Grade 91 Steel
,”
ASME
Paper No.
PVP2018-84104
.10.1115/PVP2018-84104
76.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
,
1986
, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
Int. J. Fracture
,
30
(
2
), pp.
79
102
.10.1007/BF00034019
77.
Spencer
,
B. W.
,
Hoffman
,
W. M.
,
Biswas
,
S.
,
Jiang
,
W.
,
Giorla
,
A.
, and
Backman
,
M. A.
,
2021
, “
Grizzly and BlackBear: Structural Component Aging Simulation Codes
,”
Nucl. Technol.
,
207
(
7
), pp.
981
1003
.10.1080/00295450.2020.1868278
78.
Petkov
,
M.
,
Young
,
G. A.
, and
Juan
,
P.-A.
, 06
2022
, “
Non-Conservatism of ASME BPVC Section III Division 5 Isochronous Stress–Strain Curves for 316H Stainless Steel at Low Stresses
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
061506
.10.1115/1.4054622
79.
Hyde
,
T. H.
,
Saber
,
M.
, and
Sun
,
W.
,
2010
, “
Creep Crack Growth Data and Prediction for a P91 Weld at 650 °C
,”
Int. J. Pressure Vessels Piping
,
87
(
12
), pp.
721
729
.10.1016/j.ijpvp.2010.09.002
80.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
395
402
.10.1179/030634580790441187
81.
Gosz
,
M.
,
Dolbow
,
J.
, and
Moran
,
B.
,
1998
, “
Domain Integral Formulation for Stress Intensity Factor Computation Along Curved Three-Dimensional Interface Cracks
,”
Int. J. Solids Struct.
,
35
(
15
), pp.
1763
1783
.10.1016/S0020-7683(97)00132-7
82.
Deleo
,
F.
,
Riordan
,
T.
,
Baylor
,
J.
, and
Cohen
,
M.
,
2020
, “
Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds
,”
ASME
, New York, Paper No. STP-PT-089.10.1115/STP-PT-089
83.
ASTM,
2001
, “
Standard Test Methods for Measurement of Creep Crack Growth Rates in Metals
,”
Annual Book of ASTM Standards
,
ASTM
,
Philadelphia, PA
, p.
3
.
84.
Mehmanparast
,
A.
,
Davies
,
C. M.
,
Dean
,
D. W.
, and
Nikbin
,
K.
,
2013
, “
Material Pre-Conditioning Effects on the Creep Behaviour of 316H Stainless Steel
,”
Int. J. Pressure Vessels Piping
,
108–109
, pp.
88
93
.10.1016/j.ijpvp.2013.04.013
85.
Mehmanparast
,
A.
,
2012
, “
The Influence of Inelastic Damage on Creep, Fatigue and Fracture Toughness
,”
Ph.D. thesis
,
Imperial College London
, London, UK.https://spiral.imperial.ac.uk/bitstream/10044/1/17773/1/Mehmanparast-A-2012-PhDThesis.pdf
86.
Wang
,
Y. Q.
,
Spindler
,
M. W.
,
Truman
,
C. E.
, and
Smith
,
D. J.
,
2016
, “
Critical Analysis of the Prediction of Stress Relaxation From Forward Creep of Type 316H Austenitic Stainless Steel
,”
Mater. Des.
,
95
, pp.
656
668
.10.1016/j.matdes.2016.01.118
87.
Auzoux
,
Q.
,
2004
, “
Fissuration en Relaxation Des Aciers Inoxydables Austénitiques-Influence de L'écrouissage Sur L'endommagement Intergranulaire
,” Doctoral dissertation,
École Nationale Supérieure des Mines de Paris
, Paris, France.
88.
Auzoux
,
Q.
,
Allais
,
L.
,
Caës
,
C.
,
Monnet
,
I.
,
Gourgues
,
A. F.
, and
Pineau
,
A.
,
2010
, “
Effect of Pre-Strain on Creep of Three AISI 316 Austenitic Stainless Steels in Relation to Reheat Cracking of Weld-Affected Zones
,”
J. Nucl. Mater.
,
400
(
2
), pp.
127
137
.10.1016/j.jnucmat.2010.02.021
89.
Davies
,
C. M.
,
Mueller
,
F.
,
Nikbin
,
K. M.
,
O'Dowd
,
N. P.
, and
Webster
,
G. A.
,
2006
,
Analysis of Creep Crack Initiation and Growth in Different Geometries for 316H and Carbon Manganese Steels
,
ASTM International
, West Conshohocken, PA.
90.
O'Dowd
,
N.
,
2011
, “
1 - Constraint-Based Fracture Mechanics in Predicting the Failure of Welded Joints
,”
Fracture and Fatigue of Welded Joints and Structures
(Woodhead Publishing Series in Welding and Other Joining Technologies),
Kenneth A.
Macdonald
, ed.,
Woodhead Publishing
, Cambridge, UK, pp.
17
30
.
91.
Dai
,
Y.
,
Liu
,
Y.
, and
Chen
,
H.
,
2019
, “
Numerical Investigations on the Effects of T-Stress in Mode I Creep Crack
,”
Int. J. Comput. Methods
,
16
(
8
), p.
1841002
.10.1142/S0219876218410025
92.
Curbishley
,
I.
,
Pilkington
,
R.
, and
Lloyd
,
G. J.
,
1986
, “
Macroscopic Creep Crack Growth in Type 316 Stainless Steel: III
,”
Appl. Linear Nonlinear Elast. Fract. Mech. Eng. Fract. Mech.
,
23
(
2
), pp.
401
422
.10.1016/0013-7944(86)90083-4
93.
Gupta
,
M.
,
Alderliesten
,
R. C.
, and
Benedictus
,
R.
,
2015
, “
A Review of T-Stress and Its Effects in Fracture Mechanics
,”
Eng. Fract. Mech.
,
134
, pp.
218
241
.10.1016/j.engfracmech.2014.10.013
94.
Zhao
,
L.
,
Wu
,
Y.
,
Xu
,
L.
, and
Han
,
Y.
,
2023
, “
Characterization of Creep Constraint Effects on Creep Crack Growth Behavior by q-Type Parameters
,”
Eng. Fract. Mech.
,
279
, p.
109015
.10.1016/j.engfracmech.2022.109015
95.
Radhakrishnan
,
V. M.
, and
Kamaraj
,
M.
,
1990
, “
Creep Crack Growth in Type 316 Stainless Steel and Its Weldment
,”
High Temp. Technol.
,
8
(
3
), pp.
219
226
.10.1080/02619180.1990.11753481
96.
Smith
,
E.
, and
Beardsmore
,
D. W.
,
2009
, “
Pessimisms Inherent in Current Treatments of Multiple Defects in Fracture Assessments
,”
ASME
Paper No. PVP2009-77750.10.1115/PVP2009-77750
97.
Saxena
,
A.
,
1988
, “
Creep Crack Growth Under Transient Conditions
,”
Mater. Sci. Eng. A
,
103
(
1
), pp.
125
129
.10.1016/0025-5416(88)90559-9
98.
Singh
,
G.
,
Messner
,
M.
,
Munday
,
L. B.
, and
Spencer
,
B. W.
,
2022
, “
High Temperature Creep Test Suite for Grizzly
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No.
INL/RPT-22-67519
.https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_61668.pdf
99.
Petkov
,
M. P.
,
Chevalier
,
M.
,
Dean
,
D.
, and
Cocks
,
A. C. F.
,
2021
, “
Creep-Fatigue Interactions in Type 316H Under Typical High-Temperature Power Plant Operating Conditions
,”
Int. J. Pressure Vessels Piping
,
194
, p.
104500
.10.1016/j.ijpvp.2021.104500
100.
Mehmanparast
,
A.
,
Davies
,
C. M.
,
Dean
,
D. W.
, and
Nikbin
,
K. M.
,
2014
, “
Plastic Pre-Compression and Creep Damage Effects on the Fracture Toughness Behaviour of Type 316H Stainless Steel
,”
Eng. Fract. Mech.
,
131
, pp.
26
37
.10.1016/j.engfracmech.2014.10.005
101.
Halighongde
,
S.
,
2009
, “
Simulation of High Temperature Crack Growth in Welds Using Finite Element Analysis
,” Ph.D. thesis,
University of Nottingham
, Nottingham, UK.
102.
Hu
,
J.
,
Elmukashfi
,
E.
,
Fukahori
,
T.
,
Igari
,
T.
,
Chuman
,
Y.
, and
Cocks
,
A. C.
,
2019
, “
Effect of Weld Angle on the Creep Rupture Life of Ferritic/Austenitic Dissimilar Weld Interfaces Under Remote Mode i Fracture
,”
Eng. Fract. Mech.
,
218
, p.
106606
.10.1016/j.engfracmech.2019.106606
You do not currently have access to this content.