Abstract

Future Gen IV high-temperature reactors are expected to operate above 450 °C where creep effects are significant in safety-related structures, e.g., reactor vessels. The ASME Boiler and Pressure Vessel Code (BPVC) Section III Division 5 provides the rules and methodologies for design of such high-temperature components. Of high relevance to the designer are the isochronous stress–strain curves (ISSCs) part of the rules for deformation limits in the code. The ISSCs are an important method to estimate accumulated inelastic strains at a given stress and duration at elevated temperatures. In this study, the ISSCs for 316H stainless steel in the current edition of the ASME BPVC Section III Division 5 have been reevaluated between 593 °C and 750 °C by adopting a physics-informed minimum creep rate model to reconstruct them. It is demonstrated that the current ASME Section III Division 5 minimum creep rate model underpredicts creep rates compared to experimental data at low stresses (e.g., 650 °C, <40 MPa). By employing a physics-informed minimum creep rate model which captures both diffusive- and dislocation glide/climb-controlled creep regimes, this deficiency is addressed. The ASME ISSCs for 316H stainless steel are then reconstructed by adopting this modified minimum creep rate model. It was found that the ASME ISSCs could underestimate total accumulated strains at ∼σ/σy <0.65 for durations t >1000 h by >10 times which could give rise to non-conservatism in inelastic strain. Experimental data at various temperatures confirm the findings. Potential approaches to address this non-conservatism in inelastic strain and the implications to design are discussed.

References

1.
ASME, 2021, “ASME BPVC Section III Rules for Construction of Nuclear Facility Components—Division 1 Subsection NB Class 1 Components,” ASME, New York.
2.
ASME, 2021, “ASME BPVC Section III Rules for Construction of Nuclear Facility Components—Division 5 High Temperature Reactors,” ASME, New York.
3.
Dean
,
D. W.
, and
Johns
,
J. G.
,
2015
, “
Structural Integrity Issues in High Temperature Nuclear Plant: Experience From Operation of the UK Advanced Gas-Cooled Reactor Fleet
,”
Transactions, SMiRT-23
, Manchester, UK, Aug. 10–14.https://repository.lib.ncsu.edu/bitstream/handle/1840.20/33886/SMiRT-23_Paper_459.pdf?sequence=1&isAllowed=y
4.
Messner
,
M.
,
Jetter
,
R.
, and
Sham
,
T.-L.
,
2018
, “
Establishing Temperature Upper Limit for the ASME Section III, Division 5 Design by Elastic Analysis Methods
,”
Proceedings of the ASME 2018 Pressure Vessels and Piping Conference
, July 15–20, Prague, Czech Republic.10.1115/PVP2018-84105
5.
Turk
,
B.
,
Brust
,
F. W.
,
Krishnaswamy
,
P.
, and
Wilkowski
,
G.
, 2020, Technical Input for the U.S. Nuclear Regulatory Commission Review of the 2017 Edition of ASME Boiler and Pressure Vessel Code, Section III, Division 5, “High-Temperature Reactors”—HBB-T, HBB-II, HCB-I, HCB-II, and HCB-III for Metallic Components, TLR/RES/DE/CIB-2020-13, United States Nuclear Regulatory Commission, Rockville, MD.
6.
Datta
,
A. K.
,
Roche
,
R. L.
, and
Nagate
,
T.
,
1991
, “
Recommended Practices in Elevated Temperature Design: A Compendium of Breeder Reactor Experiences (1970–1987)
,” Vol. III, Inelastic Analysis, WRC Bulletin 365, Welding Research Council, New York.
7.
ASME, 2021, “ASME BPVC Section III Rules for Construction of Nuclear Facility Components—Division 5 High Temperature Reactors. Non-Mandatory Appendix HBB-T—Rules for strain, Deformation, and Fatigue Limits at Elevated Temperatures,” ASME, New York.
8.
Marriot
,
D.
, “Isochronous Stress/Strain Curves—Origins, Scope and Applications,”
ASME
Paper No. PVP2011-57130.10.1115/PVP2011-57130
9.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
, “
Thermodynamics and Kinetics of Slip
,”
Progress in Materials Science
,
B.
Chalmers
,
J. W.
,
Christian
, and
T. B.
, and
Massalski
, eds.,
Pergamon Press
,
Oxford, UK
.
10.
Sikka
,
V. K.
,
Booker
,
B. L. P.
,
Booker
,
M. K.
, and
McEnerney
,
J. W.
,
1980
, “Tensile and Creep Data on Type 316 Stainless Steel,” Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No.
ORNL/TM-7110
.10.2172/711239
11.
Ashby
,
M. F.
, and
Frost
,
H. J.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon Press
,
Oxford, UK
.
12.
Hu
,
J.
, and
Cocks
,
A. C. F.
,
2017
, “
Effect of Creep on the Bauschinger Effect in a Polycrystalline Austenitic Stainless Steel
,”
Scr. Mater.
,
128
, pp.
100
104
.10.1016/j.scriptamat.2016.10.005
13.
Hu
,
J.
,
2015
, “
A Theoretical Study of Creep Deformation Mechanisms of Type 316H Stainless Steel at Elevated Temperatures
,”
Ph.D. thesis
,
University of Oxford
, Oxford, UK.https://ora.ox.ac.uk/objects/uuid:d956b7ff-9748-408e-a68f-31d4c1d492b5
14.
Tallman
,
A. E.
,
Kumar
,
M. A.
,
Castillo
,
A.
,
Wen
,
W.
,
Capolungo
,
L.
, and
Tomé
,
C. N.
,
2020
, “
Data-Driven Constitutive Model for the Inelastic Response of Metals: Application to 316H Steel
,”
Integr. Mater. Manuf. Innovation
,
9
(
4
), pp.
339
357
.10.1007/s40192-020-00181-5
15.
Arul Kumar, M., Beets, N., Petkov, M., Lebensohn, R., Juan, P.-A., and Capolungo L., 2022, “A Mechanistic Model for the Plastic, Creep and Internal Stress Relaxation Response of 316H,”
Int. J. Plasticity,
epub.
16.
Esposito
,
L.
,
Bonora
,
N.
, and
De Vita
,
G.
,
2016
, “
Creep Modelling of 316H Stainless Steel Over a Wide Range of Stress
,”
Procedia Struct. Integr.
, 2, pp.
927
933
.10.1016/j.prostr.2016.06.119
17.
Gates
,
R. S.
, and
Horton
,
C. A. P.
,
1977
, “
Grain Boundary Sliding in Type 316 Austenitic Steel, Part I. The Grain Size Dependence
,”
Mater. Sci. Eng.
,
27
(
2
), pp.
105
114
.10.1016/0025-5416(77)90162-8
18.
Morris
,
D. G.
, and
Harries
,
D. R.
,
1978
, “
Creep and Rupture in Type 316 Stainless Steel at Temperatures Between 525 and 900 °C Part II: Rupture and Ductility
,”
Met. Sci
,
12
(
11
), pp.
532
541
.10.1179/msc.1978.12.11.532
19.
Burton
,
B.
,
1977
,
Diffusional Creep of Polycrystalline Materials
,
Trans Tech Publications
,
Zurich, Switzerland
.
20.
Esposito
,
L.
,
Boccaccini
,
D.
,
Pucillo
,
G.
, and
Frandsen
,
H.
,
2017
, “
Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach
,”
Mater. Sci. Eng. A
,
691
, pp.
155
161
.10.1016/j.msea.2017.03.050
21.
Bonora
,
N.
, and
Esposito
,
L.
,
2010
, “
Mechanism Based Creep Model Incorporating Damage
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p. 021013.10.1115/1.4000822
22.
Sikka
,
V. K.
,
1982
, “Effects of Thermal Aging on the Mechanical Properties of Type 316 Stainless Steel—Elevated-Temperature Properties,” Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No.
ORNL/TM-8371
.10.2172/708800
23.
Whittaker
,
M. T.
,
Evans
,
M.
, and
Wilshire
,
B.
,
2012
, “
Long-Term Creep Data Prediction for Type 316H Stainless Steel
,”
Mater. Sci. Eng. A
,
552
, pp.
145
150
.10.1016/j.msea.2012.05.023
24.
Mathew
,
M. D.
,
Sundararaman
,
M.
, and
Mannan
,
S. L.
,
1997
, “
Dislocation Substructure and Precipitation in Type 316 Stainless Steel Deformed in Creep
,”
Mater. Trans. JIM
,
38
(
1
), pp.
37
42
.10.2320/matertrans1989.38.37
25.
Auzoux
,
Q.
,
2004
, “
Fissuration en relaxation des aciers inoxydables austénitiques—Influence de l'écrouissage sur l'endommagement
, Intergranulaire (in French, Francais),”
Ph.D. thesis
,
Ecole Nationale Supérieure des Mines de Paris
, Paris, France.https://www.researchgate.net/publication/30517407_Fissuration_en_relaxation_des_aciers_inoxydables_austenitiques_-_Influence_de_l'ecrouissage_sur_l'endommagement_intergranulaire
26.
Hu
,
J.
,
Green
,
G.
,
Hogg
,
S.
,
Higginson
,
R.
, and
Cocks
,
A.
,
2020
, “
Effect of Microstructure Evolution on the Creep Properties of a Polycrystalline 316H Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
772
, p.
138787
.10.1016/j.msea.2019.138787
27.
Kloc
,
L.
,
Skienička
,
V.
, and
Ventruba
,
J.
,
2001
, “
Comparison of Low Stress Creep Properties of Ferritic and Austenitic Creep Resistance Steels
,”
Mater. Sci. Eng. A
,
319–321
, pp.
774
778
.10.1016/S0921-5093(01)00943-1
28.
Mamun
,
A. A.
,
Moat
,
R. J.
,
Kelleher
,
J.
, and
Bouchard
,
P. J.
,
2019
, “
The Effect of Cyclic-Loading Generated Intergranular Strains in the Creep Deformation of a Polycrystalline Material
,”
Materialia
,
7
, p.
100385
.10.1016/j.mtla.2019.100385
29.
Mathew
,
M. D.
,
Latha
,
S.
,
Sasikala
,
G.
,
Mannan
,
S. L.
, and
Rodriguez
,
P.
,
1988
, “
Creep Properties of Three Heats of Type 316 Stainless Steel for Elevated Temperature Nuclear Applications
,”
Nucl. Technol.
,
81
(
1
), pp.
114
121
.10.13182/NT88-A34083
30.
Monteiro
,
S. N.
,
Santos da Luz
,
F.
,
Pinheiro
,
W. A.
,
Brandao
,
L. P. M.
,
de Oliveira Braga
,
F.
, and
Salgado de Assis
,
F.
,
2017
, “
Creep Parameters and Dislocation Substructure in AISI 316 Austenitic Stainless Steel From 600 °C to 800 °C
,”
Mater. Res.
,
20
(
suppl 2
), pp.
231
235
.10.1590/1980-5373-mr-2016-0998
31.
Garofalo
,
F.
,
Richmond
,
O.
,
Domis
,
W. F.
, and
von Gemmingen
,
F.
,
1963
, “
Strain-Time, Rate-Stress and Rate-Temperature Relations During Large Deformations in Creep
,”
Conf. Proc. IMechE
,
178
(
1
), pp.
31
39
.10.1243/PIME_CONF_1963_178_010_02
32.
Gates
,
R. S.
, and
Horton
,
C. A. P.
,
1977
, “
Grain Boundary Sliding in Type 316 Austenitic Steels, Part II. The Creep Strain and Stress Dependence
,”
Mater. Sci. Eng.
,
27
(
2
), pp.
115
125
.10.1016/0025-5416(77)90163-X
33.
Perkins
,
R. A.
,
Padgett
,
R. A.
, and
Tunali
,
N. K.
,
1973
, “
Tracer Diffusion of 59Fe and 51Cr in Fe-17Ni-12Ni Austenitic Alloy
,”
Metall. Trans.
,
4
(
11
), pp.
2535
2540
.10.1007/BF02644255
34.
Chen
,
B.
,
Hu
,
J.
,
Flewitt
,
P. E. J.
,
Cocks
,
A. C. F.
,
Ainsworth
,
R. A.
,
Smith
,
D. J.
,
Dean
,
D. W.
, and
Scenini
,
F.
,
2015
, “
Effect of Thermal Ageing on Creep and Oxidation Behaviour of Type 316H Stainless Steel
,”
Mater. High Temp.
,
32
(
6
), pp.
593
606
.10.1179/1878641315Y.0000000005
35.
ASME, 2021, “ASME BPVC Section XI Division 2—Requirements for Reliability and Integrity Management (RIM) Programs for Nuclear Power Plants—Rules for In-Service Inspection of Nuclear Power Plant Components,” ASME, New York.
36.
Sham
,
T.-L.
,
2021
, “Historical Context and Perspective on Allowable stresses and Design Parameters in ASME Section III Division 5 Subsection HB Subpart B,” Argonne National Laboratory, Lemont, IL, ANL Technical Report No.
ANL/AMD-21/1
.https://www.nrc.gov/docs/ML2109/ML21090A033.pdf
You do not currently have access to this content.