Abstract

This article explores the applicability of utilizing different equivalent diameter (Deq) equations to estimate the vortex shedding frequency and onset of self-excited acoustic resonance for various types of finned cylinders. The focus is on three finned cylinder types that are commonly used in industrial heat exchangers: straight, twist-serrated, and crimped spirally finned cylinders. Within each fin type, at least three different finned cylinders are investigated. The results indicate that at off-resonance conditions, utilizing the appropriate equivalent diameter collapses the Strouhal number data within the typical Strouhal number variations of an equivalent diameter circular, bare cylinder. However, when acoustic resonance is initiated, the onset and the peak of resonance excitation in all of the finned cylinder cases generally occurred at a reduced flow velocity earlier than that observed from their equivalent diameter bare cylinders. This suggests that although utilizing the appropriate equivalent diameter can reasonably estimate the vortex shedding frequency away from acoustic resonance excitation, it cannot be used to predict the onset of acoustic resonance in finned tubes. The findings of this study indicate that the effective diameter approach is not sufficient to capture the intrinsic changes in the flow-sound interaction mechanism as a result of adding fins to a bare cylinder. Thus, a revision of the acoustic Strouhal number charts is required for finned tubes of different types and arrangements.

References

1.
Ziada
,
S.
,
Jebodhsingh
,
D.
,
Weaver
,
D.
, and
Eisinger
,
F.
,
2005
, “
The Effect of Fins on Vortex Shedding From a Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
21
(
5–7
), pp.
689
705
.10.1016/j.jfluidstructs.2004.12.003
2.
Arafa
,
N.
, and
Mohany
,
A.
,
2015
, “
Aeroacoustic Response of a Single Cylinder With Straight Circular Fins in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051301
.10.1115/1.4029658
3.
Arafa
,
N.
, and
Mohany
,
A.
,
2019
, “
Wake Structures and Acoustic Resonance Excitation of a Single Finned Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
86
, pp.
70
93
.10.1016/j.jfluidstructs.2019.01.025
4.
Islam
,
M.
, and
Mohany
,
A.
,
2020
, “
Vortex Shedding Characteristics in the Wake of Circular Finned Cylinders
,”
Phys. Fluids
,
32
(
4
), p.
045113
.10.1063/5.0005079
5.
Islam
,
M. R.
,
Shaaban
,
M.
, and
Mohany
,
A.
,
2020
, “
Vortex Dynamics and Acoustic Sources in the Wake of Finned Cylinders During Resonance Excitation
,”
Phys. Fluids
,
32
(
7
), p.
075117
.10.1063/5.0016076
6.
Islam
,
M.
, and
Mohany
,
A.
,
2020
, “
On the Three-Dimensional Flow Development Around Circular Finned Cylinders
,”
Phys. Fluids
,
32
(
11
), p.
115116
.10.1063/5.0026603
7.
Islam
,
M. R.
, and
Mohany
,
A.
,
2021
, “
Flow-Induced Acoustic Resonance of Finned Cylinders With Varying Fin Heights
,”
ASME J. Pressure Vessel Technol.
,
143
(
4
), p.
041405
.10.1115/1.4049709
8.
Eisinger
,
F.
,
Francis
,
J.
, and
Sullivan
,
R.
,
1996
, “
Prediction of Acoustic Vibration in Steam Generator and Heat Exchanger Tube Banks
,”
ASME J. Pressure Vessel Technol
., 118(2), pp.
221
236
.10.1115/1.2842185
9.
Weaver
,
D.
,
Ziada
,
S.
,
Au-Yang
,
M.
,
Chen
,
S.
,
Pa Ï Doussis
,
M.
, and
Pettigrew
,
M.
,
2000
, “
Flow-Induced Vibrations in Power and Process Plant Components–Progress and Prospects
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
339
348
.10.1115/1.556190
10.
Feenstra
,
P.
,
Weaver
,
D.
, and
Eisinger
,
F. L.
,
2006
, “
A Study of Acoustic Resonance in a Staggered Tube Array
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
533
540
.10.1115/1.2349563
11.
Mohany
,
A.
, and
Ziada
,
S.
,
2011
, “
Measurements of the Dynamic Lift Force Acting on a Circular Cylinder in Cross-Flow and Exposed to Acoustic Resonance
,”
J. Fluids Struct.
,
27
(
8
), pp.
1149
1164
.10.1016/j.jfluidstructs.2011.04.009
12.
Oeng
,
Ö. A.
, and
Ziada
,
S.
,
1998
, “
An in-Depth Study of Vortex Shedding, Acoustic Resonance and Turbulent Forces in Normal Triangle Tube Arrays
,”
J. Fluids Struct.
,
12
(
6
), pp.
717
758
.10.1006/jfls.1998.0162
13.
Finnegan
,
S.
,
Meskell
,
C.
, and
Ziada
,
S.
,
2010
, “
Experimental Investigation of the Acoustic Power Around Two Tandem Cylinders
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041306
.10.1115/1.4001701
14.
Ziada
,
S.
,
Oengören
,
A.
, and
Bühlmann
,
E.
,
1989
, “
On Acoustical Resonance in Tube Arrays Part ii: Damping Criteria
,”
J. Fluids Struct.
,
3
(
3
), pp.
315
324
.10.1016/S0889-9746(89)90091-1
15.
Mair
,
W.
,
Jones
,
P.
, and
Palmer
,
R.
,
1975
, “
Vortex Shedding From Finned Tubes
,”
J. Sound Vib.
,
39
(
3
), pp.
293
296
.10.1016/S0022-460X(75)80082-4
16.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2019
, “
Passive Noise Control Technique for Suppressing Acoustic Resonance Excitation of Spirally Finned Cylinders in Cross-Flow
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
38
51
.10.1016/j.expthermflusci.2018.10.029
17.
Eid
,
M.
, and
Ziada
,
S.
,
2011
, “
Vortex Shedding and Acoustic Resonance of Single and Tandem Finned Cylinders
,”
J. Fluids Struct.
,
27
(
7
), pp.
1035
1048
.10.1016/j.jfluidstructs.2011.04.011
18.
Hamakawa
,
H.
,
Adachi
,
T.
,
Matsuoka
,
H.
,
Hosokai
,
K.
,
Nishida
,
E.
,
Kurihara
,
E.
, and
Hayashi
,
H.
,
2014
, “
Aeolian Tone Radiated From a Circular Cylinder With Solid Spiral Fin in Cross Flow
,”
J. Fluid Sci. Technol.
,
9
(
3
), pp.
JFST0053
JFST0053
.10.1299/jfst.2014jfst0053
19.
Hamakawa
,
H.
,
Matsuoka
,
H.
,
Hosokai
,
K.
,
Nishida
,
E.
, and
Kurihara
,
E.
,
2014
, “
Characteristics of Aerodynamic Sound Radiated From Two Finned Cylinders
,”
ASME
Paper No. PVP2014-28855
.10.1115/PVP2014-28855
20.
Ryu
,
B.-N.
,
Kim
,
K.-C.
, and
Boo
,
J.-S.
,
2003
, “
The Effect of Serrated Fins on the Flow Around a Circular Cylinder
,”
KSME Int. J.
,
17
(
6
), pp.
925
934
.10.1007/BF02983407
21.
Hirota
,
K.
,
Nakamura
,
T.
,
Kikuchi
,
H.
,
Isozaki
,
K.
, and
Kawahara
,
H.
,
2002
, “
Fluidelastic and Vortex Induced Vibration of a Finned Tube Array
,”
ASME
Paper No. IMECE2002-32793
.10.1115/IMECE2002-32793
22.
Lumsden
,
R.
,
2008
, “
The Effect of Fins on Fluidelastic Instability in In-Line and Rotated Square Tube Arrays
,” M.S. thesis,
McMaster University
,
Hamilton, ON, Canada
.
23.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2018
, “
Near-Wake Characteristics and Acoustic Resonance Excitation of Crimped Spirally Finned Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
051301
.10.1115/1.4040549
24.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2021
, “
Vorticity Shedding and Acoustic Resonance Excitation of Two Tandem Spirally Finned Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
143
(
2
), p.
021405
.10.1115/1.4048102
25.
Arafa
,
N.
,
Tariq
,
A.
,
Mohany
,
A.
, and
Hassan
,
M.
,
2014
, “
Effect of Cylinder Location Inside a Rectangular Duct on the Excitation Mechanism of Acoustic Resonance
,”
Can. Acoust.
,
42
(
1
), pp.
33
40
.https://jcaa.caaaca.ca/index.php/jcaa/article/view/2609
26.
Alziadeh
,
M.
,
2017
, “
Flow-Sound Interaction Mechanism of a Single Spirally Finned Cylinder in Cross-Flow
,” M.S. thesis,
University of Ontario Institute of Technology (Canada)
,
Oshawa, ON, Canada
.
27.
Arafa
,
N.
, and
Mohany
,
A.
,
2016
, “
Flow-Excited Acoustic Resonance of Isolated Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p. 01130.10.1115/1.4030270
28.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
29.
Norberg
,
C.
,
1994
, “
An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio
,”
J. Fluid Mech.
,
258
, pp.
287
316
.10.1017/S0022112094003332
30.
Lienhard
,
J. H.
,
1966
, “
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders
,” Technical Extension Service, Washington State University, Pullman, WA.
31.
Mohany
,
A.
,
2012
, “
Self-Excited Acoustic Resonance of Isolated Cylinders in Cross-Flow
,”
Nucl. Rev.
,
1
(
1
), pp.
45
55
.10.12943/ANR.2012.00007
32.
Shaaban
,
M.
, and
Mohany
,
A.
,
2019
, “
Characteristics of Acoustic Resonance Excitation by Flow Around Inline Cylinders
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051301
.10.1115/1.4044118
33.
Cumpsty
,
N. A.
, and
Whitehead
,
D.
,
1971
, “
The Excitation of Acoustic Resonances by Vortex Shedding
,”
J. Sound Vib.
,
18
(
3
), pp.
353
369
.10.1016/0022-460X(71)90707-3
34.
Crouse
,
B.
,
Senthooran
,
S.
,
Balasubramanian
,
G.
,
Freed
,
D.
,
Nölting
,
S.
,
Mongeau
,
L.
, and
Hong
,
J.-S.
,
2005
, “
Sunroof Buffeting of a Simplified Car Model: Simulations of the Acoustic and Flow-Induced Responses
,”
SAE
Paper No. 2005-01-2498.10.4271/2005-01-2498
35.
Mohany
,
A.
, and
Ziada
,
S.
,
2005
, “
Flow-Excited Acoustic Resonance of Two Tandem Cylinders in Cross-Flow
,”
J. Fluids Struct.
,
21
(
1
), pp.
103
119
.10.1016/j.jfluidstructs.2005.05.018
36.
Hamakawa
,
H.
,
Kouno
,
Y.
, and
Nishida
,
E.
,
2010
, “
Effect of Fins on Vortex Shedding Noise Generated From a Circular Cylinder in Cross Flow
,”
ASME
Paper No. FEDSM-ICNMM2010-30290
.10.1115/FEDSM-ICNMM2010-30290
37.
Ziada
,
S.
,
2006
, “
Vorticity Shedding and Acoustic Resonance in Tube Bundles
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
2
), pp.
186
189
.10.1590/S1678-58782006000200008
You do not currently have access to this content.