Abstract

Fluidelastic instability (FEI) is well known to be a critical flow-induced vibration concern for the integrity of the tubes in nuclear steam generators. Traditionally, this has been assumed to occur in the direction transverse to the direction of flow but the tube failures at San Onofre Nuclear Generating Station (SONGS) in Los Angeles proved that this assumption is not generally valid. A simple tube-in-channel theoretical model was previously developed to predict streamwise as well as transverse FEI in a parallel triangular tube array. This predicted that this array geometry was particularly sensitive to streamwise FEI for high mass-damping parameters and small pitch ratios, the conditions in which the SONGS failures occurred. The advantage of this simple modeling approach is that no new empirical data are required for parametric studies of the effects of tube pattern and pitch ratio on FEI. The tube-in-channel model has been extended to in-line square, normal triangular, and rotated square tube arrays and the stability of these geometric patterns are analyzed for the effects of varying pitch ratio and the mass-damping parameter. The results are compared with the available experimental data and conclusions are drawn regarding the relative vulnerability of these different tube array geometries to streamwise FEI.

References

1.
SONGS Report
,
2013
, “
San Onofre Nuclear Generating Station Unit 2 and 3 Replacement Steam Generators Root Cause Analysis Report for Tube Wear Identified in the Unit 2 and Unit 3 Steam Generators of San Onofre Nuclear Generating Station, (Redacted) Mitsubishi Heavy Industries
,” U.S. NRC, Rockville, MD, Report No. UES-20120254 Rev 0.
2.
Pettigrew
,
M. J.
, and
Taylor
,
C. E.
,
1991
, “
Fluidelastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations
,”
ASME J. Pressure Vessel Technol.
,
113
(
2
), pp.
242
256
.10.1115/1.2928752
3.
Schröder
,
K.
, and
Gelbe
,
H.
,
1999
, “
New Design Recommendations for Fluidelastic Instability in Heat Exchanger Tube Bundles
,”
J. Fluids Struct.
,
13
(
3
), pp.
361
379
.10.1006/jfls.1999.0208
4.
Weaver
,
D.
, and
Fitzpatrick
,
J.
,
1988
, “
A Review of Crossflow Induced Vibrations in Heat Exchanger Tube Arrays
,”
J. Fluids Struct.
,
2
(
1
), pp.
73
93
.10.1016/S0889-9746(88)90137-5
5.
ASME,
1998
, “
ASME Boiler and Pressure Vessel Code, Section III, Non-Mandatory Appendix N, Subarticle N-1300
,” Flow-Induced Vibration of Tubes and Tube Banks, ASME, New York.
6.
Ziada
,
S.
,
Hassan
,
M.
, and
Gelbe
,
H.
,
2018
, “
Vibrations in Heat Exchanger Tube Bundles
,”
VDI-Wärmeatlas. Springer Reference Technique
,
Springer Vieweg
,
Berlin, Heidelberg, Germany
.
7.
Weaver
,
D.
, and
Schneider
,
W.
,
1983
, “
The Effect of Flat Bar Supports on the Crossflow Induced Response of Heat Exchanger u-Tubes
,”
ASME J. Pressure Vessel Technol.
,
105
(
4
), pp.
775
781
.10.1115/1.3227481
8.
Au-Yang
,
M. K.
,
2001
,
Flow-Induced Vibration of Power and Process Plant Components: A Practical Workbook
,
ASME Press
,
New York
.
9.
Yetisir
,
M.
, and
Weaver
,
D.
,
1986
, “
The Dynamics of Heat Exchanger u-Bend Tubes With Flat-Bar Supports
,”
ASME J. Pressure Vessel Technol.
,
108
(
4
), pp.
406
412
.10.1115/1.3264805
10.
Hassan
,
M.
, and
Weaver
,
D.
,
2015
, “
The Effect of Flat Bar Supports on Streamwise Fluidelastic Instability in Heat Exchanger Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061302
.10.1115/1.4029973
11.
Weaver
,
D. S.
, and
Koroyannakis
,
D.
,
1983
, “
Flow Induced Vibrations of Heat Exchanger U-Tubes, a Simulation to Study the Effects of Asymmetric Stiffness
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
105
(
1
), pp.
67
75
.10.1115/1.3269069
12.
Mureithi
,
N.
,
Zhang
,
C.
,
Ruel
,
M.
, and
Pettigrew
,
M.
,
2005
, “
Fluidelastic Instability Tests on an Array of Tubes Preferentially Flexible in the Flow Direction
,”
J. Fluids Struct.
,
21
(
1
), pp.
75
87
.10.1016/j.jfluidstructs.2005.03.010
13.
Janzen
,
V.
,
Han
,
Y.
, and
Pettigrew
,
M. J.
,
2009
, “
Design Specifications to Ensure Flow-Induced Vibration and Fretting Wear Performance in CANDU Steam Generators and Heat Exchangers
,”
ASME
Paper No. PVP 2009-78078.10.1115/PVP 2009-78078
14.
Feenstra
,
P.
,
Nakamura
,
T.
, and
Weaver
,
D. S.
,
2009
, “
Two Phase Flow-Induced Vibration of Parallel Triangular Tube Arrays With Asymmetric Support Stiffness
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031301
.10.1115/1.3062964
15.
Violette
,
R.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2006
, “
Fluidelastic Instability of an Array of Tubes Preferentially Flexible in the Flow Direction Subjected to Two-Phase Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
128
(
1
), pp.
148
159
.10.1115/1.2138064
16.
Olala
,
S.
, and
Mureithi
,
N. W.
,
2015
, “Streamwise Dynamics of a Tube Array Subjected to Two-Phase Cross-Flows,”
ASME Paper No
. PVP2015-45714.10.1115/P VP2015-45714
17.
Nakamura
,
T.
,
Nishimura
,
K.
,
Fujita
,
Y.
, and
Kohara
,
C.
,
2011
, “
Study on in-Flow Vibration of Cylinder Arrays Caused by Cross Flow
,”
ASME
Paper No. PVP 2011-57068.10.1115/PVP 2011-57068
18.
Nakamura
,
T.
,
Fujita
,
Y.
, and
Sumitani
,
T.
,
2014
, “
Study on In-Flow Fluidelastic Instability of Triangular Tube Arrays Subjected to Air Cross Flow
,”
ASME J. Pressure Vessel Technol.
,
136
(
5
), p.
051302
.10.1115/1.4027618
19.
Nakamura
,
T.
,
Hagiwara
,
S.
,
Yamada
,
J.
, and
Usuki
,
K.
,
2015
, “
Investigation of in-Flow Fluidelastic Instability of Square Tube Arrays Subjected to Air Cross Flow
,”
ASME
Paper No. PVP2015.10.1115/PVP2015
20.
Nakamura
,
T.
,
Tsujita
,
T.
, and
Usuki
,
K.
,
2016
, “
Study on In-Flow Fluidelasitc Instability of Normal Triangular Array
,”
11th International Conference on Flow-Induced Vibration
, Hague, The Netherlands, July 4–6, Paper No. FIV2016.
21.
Nakamura
,
T.
, and
Tsujita
,
T.
,
2017
, “
Study on the Stream-Wise Fluidelastic Instability of Rotated Square Arrays of Cylinders Subjected to Cross-Flow
,”
ASME
Paper No. PVP2017-65162.10.1115/PVP2017-65162
22.
Olala
,
S.
, and
Mureithi
,
N. W.
,
2017
, “
Prediction of Streamwise Fluidelastic Instability of a Tube Array in Two-Phase Flow and Effect of Frequency Detuning
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031301
.10.1115/1.4034467
23.
Hassan
,
M.
, and
Weaver
,
D. S.
,
2017a
, “
Modelling of Streamwise and Transverse Fluidelastic Instability in Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051304
.10.1115/1.4032817
24.
Lever
,
J. H.
, and
Weaver
,
D. S.
,
1982
, “
A Theoretical Model for the Fluid-Elastic Instability in Heat Exchanger Tube Bundles
,”
ASME J. Pressure Vessel Technol.
,
104
(
3
), pp.
147
158
.10.1115/1.3264196
25.
Hassan
,
M.
, and
Weaver
,
D.
,
2017b
, “
Pitch and Mass Ratio Effects on Transverse and Streamwise Fluidelastic Instability in Parallel Triangular Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061302
.10.1115/1.4037717
26.
Hirota
,
K.
,
Morita
,
H.
,
Hirai
,
J.
,
Iwasaki
,
A.
,
Utsumi
,
S.
,
Shimamura
,
K.
, and
Kawakami
,
R.
,
2013
, “
Investigation on in-Flow Fluidelastic Instability of an Array of Tubes
,”
ASME
Paper No. PVP2013-97163.10.1115/PVP PVP2013-97163
27.
Khalvatti
,
A.
,
Mureithi
,
N. W.
, and
Pettigrew
,
M. J.
,
2010
, “
Effect of Preferential Flexibility Direction on Fluidelastic Instability of a Rotated Triangular Tube Bundle
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041309
.10.1115/1.4002181
28.
Khalifa
,
A.
,
Weaver
,
D. S.
, and
Ziada
,
S.
,
2013
, “
Modelling of the Phase Lag Causing Fluidelastic Instability in a Parallel Triangular Tube Array
,”
J. Fluids Struct.
,
43
, pp.
371
382
.10.1016/j.jfluidstructs.2013.09.014
29.
El Bouzidi
,
S.
, and
Hassan
,
M.
,
2015a
, “
An Investigation of Time Lag Causing Fluidelastic Instability in Tube Arrays
,”
J. Fluids Struct.
,
57
, pp.
264
276
.10.1016/j.jfluidstructs.2015.06.005
30.
El Bouzidi
,
S.
, and
Hassan
,
M.
,
2015b
, “
The Effect of Streamwise Unsteady Fluid Forces on the Stability of a Vibrating Tube Subjected to Flow
,”
ASME
Paper No. PVP2015-45600.10.1115/PVP PVP2015-45600
31.
Rahman
,
S.
,
El Bouzidi
,
S.
,
Elbanhawy
,
O.
,
Hassan
,
M.
, and
Weaver
,
D.
,
2021
, “
Numerical Prediction of the Phase Difference in Tube Bundles Experiencing Streamwise Fluidelastic Instability
,”
ASME
Paper No. PVP2021.10.1115/PVP2021
32.
Seitanis
,
S. A.
,
Anagnostopoulos
,
P.
, and
Bearman
,
P. W.
,
2005
, “
An Experimental Study of the In-Line Oscillations of a Closely Spaced Row of Cylinders in Cross-Flow
,”
J. Fluids Struct.
,
21
(
2
), pp.
211
226
.10.1016/j.jfluidstructs.2005.07.004
33.
Price
,
S.
, and
Païdoussis
,
M.
,
1984
, “
An Improved Mathematical Model for the Stability of Cylinder Rows Subject to Cross-Flow
,”
J. Sound Vib.
,
97
(
4
), pp.
615
640
.10.1016/0022-460X(84)90512-1
34.
Hassan
,
M.
, and
Weaver
,
D.
,
2018
, “Transverse and Streamwise Fluid Elastic Instability in
Rotated Square Tube Arrays
,” 9th International Symposium on Fluid-Strucutre Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise, FIV2018, Toronto, ON, Canada, July 8–11.
35.
D'Netto
,
W.
, and
Weaver
,
D. S.
,
1987
, “
Divergence and Limit Cycle Oscillations in Valves Operating at Small Openings
,”
J. Fluids Struct.
,
1
(
1
), pp.
3
18
.10.1016/S0889-9746(87)90146-0
You do not currently have access to this content.