Abstract

The probabilistic properties of steel, namely, the mean value, coefficient of variation, and probability distribution are needed for the development of Load and Resistance Factor Design (LRFD) equations for Class 2 and 3 nuclear piping and for probabilistic and risk analysis studies. This work investigates the probabilistic properties for the most representative steels used for nuclear piping, such as carbon, stainless austenitic, and low alloy. Steel properties at room temperature and up to temperature 700 °F are examined through reported mechanical behavior. The work concludes with the impact of the stainless steels' probabilistic properties on the reliability index or else probability of failure for the piping. The presented data can help organize steel materials for LRFD and reduce the variability of the reliability index.

References

1.
American Society of Mechanical Engineers
,
2019
,
ASME Boiler and Pressure Vessel Code, Sections II and III
,
ASME, New York
.
2.
American Society of Mechanical Engineers
,
2017
,
Companion Guide to the ASME Boiler and Pressure Vessel Code
, 5th ed.,
K. R.
Rao
, ed.,
ASME
,
New York
.
3.
Ayyub
,
B. M.
, and
McCuen
,
R. H.
,
2003
,
Probability, Statistics and Reliability for Engineers and Scientists
,
CRC
,
Boca Raton, FL
, Chap.
14
.
4.
Avrithi
,
K.
, and
Ayyub
,
B. M.
,
2010
, “
Load and Resistance Factor Design of Nuclear Piping for Primary Loads
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021101
.10.1115/1.4000976
5.
Avrithi
,
K.
, and
Ayyub
,
B. M.
,
2010
, “
A Reliability-Based Expression of Eq. (11) of the ASME B&PV Code for Class 2 and 3 Nuclear Pipes
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
054502
.10.1115/1.4002460
6.
Avrithi
,
K.
, and
Ayyub
,
B. M.
,
2009
, “
Strength Model Uncertainties of Burst, Yielding and Excessive Bending of Piping
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031207
.10.1115/1.3109983
7.
Avrithi
,
K.
,
2018
, “
Probabilistic Properties of Steel for Nuclear Piping
,”
ASME
Paper No. IMECE 2018-87054.10.1115/2018-87054
8.
Reynolds
,
M. B.
,
1970
, “
Failure Behavior of Flawed Carbon Steel Pipes and Fittings
,” AEC Research and Development Report, Report No.
GEAP-10236
.10.2172/4015033
9.
Takahashi
,
K.
,
Ando
,
K.
,
Hisatsune
,
M.
, and
Hasegawa
,
K.
,
2007
, “
Failure Behavior of Carbon Steel Pipe With Local Wall Thinning Near Orifice
,”
Nucl. Eng. Des.
,
237
(
4
), pp.
335
341
. 10.1016/j.nucengdes.2006.04.033
10.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
1998
, “
Low-Cycle Fatigue of Piping and Pressure Vessel Steels in LWR Environments
,”
Nucl. Eng. Des.
,
184
(
1
), pp.
49
76
.10.1016/S0029-5493(97)00368-3
11.
Kulkarni
,
S. C.
,
Desai
,
Y. M.
,
Kant
,
T.
,
Reddy
,
G. R.
,
Parulekar
,
Y.
, and
Vaze
,
K. K.
,
2003
, “
Uniaxial and Biaxial Ratchetting Study of SA333 Gr. 6 Steel at Room Temperature
,”
Int. J. Pressure Vessel Piping
,
80
(
3
), pp.
179
185
.10.1016/S0308-0161(03)00029-2
12.
Greenstreet
,
W. L.
,
1978
, “Experimental Study of Plastic Responses of Pipe Elbows,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
ORNL/NUREG-24
.10.2172/5147691
13.
Chopra
,
O.
, and Stevens, G. L.,
2018
, “
Effect of LWR Water Environments on the Fatigue Life of Reactor Materials
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG CR-6909, Rev. 1
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6909/r1/index.html
14.
Al-Khazraji
,
A. N.
,
Amin
,
S. A.
, and
Al-Warmizyari
,
H. A.
,
2016
, “
Investigation of Mechanical Properties for Carbon Steels Serviced at High Temperatures After Long Time of Operation
,”
Adv. Nat. Appl. Sci.
,
10
(
17
), pp.
60
68
https://www.researchgate.net/publication/312212434_Investigation_of_Mechanical_Properties_for_Carbon_Steels_Tubes_Serviced_at_High_Temperature_after_Long_Time_of_Operation
15.
Nam
,
H.-S.
,
Je
,
J.-H.
,
Han
,
J.-J.
, and
Kim
,
Y.-J.
,
2014
, “
Investigation of Crack Tip Stress and Strain Fields at Crack Initiation of A106 Gr. B Carbon Steels Under High Strain Rates
,”
Procedia Mater. Sci.
,
3
(
20
), pp.
764
771
.10.1016/j.mspro.2014.06.125
16.
Marschall
,
C. W.
,
Landow
,
M. P.
, and
Wilkowski
,
G. M.
,
1993
, “
Loading Rate Effects on Strength and Fracture Toughness of Pipe Steels Used in Task 1 of the IPIRG Program
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6098
. https://inis.iaea.org/search/search.aspx?orig_q=RN:25025776
17.
Rudland
,
D. L.
,
Scott
,
P. M.
, and
Wilkowski
,
G. M.
,
1996
, “
The Effect of Cyclic and Dynamic Loads on Carbon Steel Pipe
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6438
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/053/27053094.pdf?r=1&r=1
18.
Chavez
,
S. A.
,
Korth
,
G. E.
,
Harper
,
D. M.
, and
Walker
,
T. J.
,
1994
, “
High Temperature Tensile and Creep Data for Inconel 600, 304 Stainless Steel and SA106B Carbon Steel
,”
Nucl. Eng. Des.
,
148
(
2–3
), pp.
351
363
.10.1016/0029-5493(94)90120-1
19.
Youtsos
,
A. G.
,
Gutierrez
,
E.
, and
Verzeletti
,
G.
,
1990
, “
Viscoplastic Behaviour of Stainless Steel AISI 316 L Under Cyclic Loading Conditions
,”
Acta Mech.
,
84
(
1–4
), pp.
109
125
.10.1007/BF01176091
20.
Kubík
,
P.
,
Šebek
,
F.
,
Petruška
,
J.
,
Hůlka
,
J.
,
Park
,
N.
, and
Huh
,
H.
,
2018
, “
Comparative Investigation of Ductile Fracture With 316 L Steel in Small Punch Tests: Experiments and Simulations
,”
Theor. Appl. Fract. Mech.
,
98
, pp.
186
198
.10.1016/j.tafmec.2018.10.005
21.
Singh
,
P. K.
,
Vaze
,
K. K.
,
Ghosh
,
A. K.
,
Kushwaha
,
H. S.
,
Pukazhendi
,
D. M.
, and
Murthy
,
D. S. R.
,
2006
, “
Crack Resistance of Austenitic Stainless-Steel Pipe and Pipe Welds With a Circumferential Crack Under Monotonic Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
(
11
), pp.
901
915
.10.1111/j.1460-2695.2006.01049.x
22.
U.S. NRC Piping Review Committee
,
1984
, “
Evaluation of Potential Pipe Breaks
,” U.S. NRC Piping Review Committee, Washington, DC, Report No.
NUREG-1061
.10.2172/6280601
23.
Kamaya
,
M.
,
2015
, “
Elastic-Plastic Failure Assessment of Cold Worked Stainless-Steel Pipes
,”
Int. J. Pressure Vessels Piping
,
131
, pp.
45
51
.10.1016/j.ijpvp.2015.04.008
24.
Nakamura
,
I.
, and
Kasahara
,
N.
,
2017
, “
Excitation Tests on Elbow Pipe Specimens to Investigate Failure Behavior Under Excessive Seismic Loads
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061802
.10.1115/1.4037952
25.
Smith
,
G. V.
,
1969
, “
An Evaluation of the Yield, Tensile, Creep, and Rupture Strengths of Wrought 304, 316, 321, and 347 Stainless Steels at Elevated Temperatures
,” American Society for Testing and Materials, Philadelphia, PA, Standard No.
DS 5S2
.https://www.worldcat.org/title/evaluation-of-the-yield-tensile-creep-and-rupture-strengths-of-wrought-304-316-321-and-347-stainless-steels-at-elevated-temperatures/oclc/
26.
Blandford
,
R. K.
, Morton, D. K., Snow, S. D., and Rahl, T. E.,
2007
, “
Tensile Stress-Strain Results for 304L and 316L Stainless Steel Plate at Temperature
,”
ASME
Paper No. PVP2007-26096.10.1115/PVP2007-26096
27.
Ware
,
A. G.
,
1995
, “
Estimates of Margins in ASME Code Strength Values for Stainless Steel Nuclear Piping
,” Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID, Report Nos.
INEL-95/00197, CONF-950740-102
. https://digital.library.unt.edu/ark:/67531/metadc627762/
28.
Rahman
,
S.
,
1995
, “
A Stochastic Model for Elastic-Plastic Fracture Analysis of Circumferential Through-Wall-Cracked Pipes Subject to Bending
,”
Eng. Fract. Mech.
,
52
(
2
), pp.
265
288
.10.1016/0013-7944(95)00018-Q
29.
Lu
,
Y.
, and
Hui
,
H.
,
2018
, “
Investigation on Mechanical Properties of S30403 Austenitic Stainless Steel at Different Temperatures
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p. 0
24502
.10.1115/1.4039123
30.
Grigori
,
S. C.
,
1971
, “
Testing the Six-Inch-Thick Flawed Tensile Specimens, Paper No. 22
,” Oak Ridge National Laboratory, Oak Ridge, TN.https://digital.library.unt.edu/ark:/67531/metadc1035607/
31.
Seifert
,
H. P.
, and
Ritter
,
S.
,
2008
, “
Strain-Induced Corrosion Cracking Behavior of Low Alloy Steels Under Boiling Water Reactors
,”
J. Nucl. Mater.
,
378
(
3
), pp.
312
326
.10.1016/j.jnucmat.2008.06.035
32.
Ogawa
,
T.
,
Itatani
,
M.
,
Saito
,
T.
,
Hayashi
,
T.
,
Narazaki
,
C.
, and
Tsuchihashi
,
K.
,
2012
, “
Fracture Assessment for a Dissimilar Metal Weld of Low Alloy Steel and Ni-Base Alloy
,”
Int. J. Pressure Vessels Piping
,
90–91
, pp.
61
68
.10.1016/j.ijpvp.2011.10.012
You do not currently have access to this content.