Abstract

Reliability of the natural gas pipeline network is related to security of gas supply directly. According to the different required functions of the natural gas pipeline network, its reliability is divided into three aspects, namely mechanical reliability, hydraulic reliability, and gas supply reliability. However, most of the previous studies confused the definitions of the hydraulic reliability and gas supply reliability. Moreover, the uncertainty in the process of supplying natural gas to the targeted market and the hydraulic characteristic of the natural gas pipeline network are often ignored. Therefore, a methodology to assess hydraulic reliability and gas supply reliability of the natural gas pipeline network is developed in the study, and the uncertainty and hydraulic characteristic of the natural gas pipeline network are both considered. The methodology consists of four parts: establishment of the indicator system, calculation of the gas supply, prediction of the market demand, and assessment of the hydraulic reliability and gas supply reliability. Moreover, a case study is applied to confirm the feasibility of the methodology, and the reliability evaluation results provide a comprehensive picture about the abilities of the natural gas pipeline network to perform the specified gas supply function and satisfy consumers' demand, respectively. Furthermore, a comparison between these two types of reliability is presented. The results indicate that the natural gas pipeline network may not be able to meet the market demand even if the system completes the required gas supply tasks due to the impact of the market demand uncertainty.

References

1.
Weihe
,
H.
,
Honglong
,
Z.
, and
Mingfei
,
L.
,
2019
, “
Development History and Prospect of Oil & Gas Storage and Transportation Industry in China
,”
Oil Gas Storage Transp.
,
38
(
1
), pp.
1
11
.http://yqcy.paperonce.org/oa/darticle.aspx?type=view&id=201911024
2.
Huai
,
S.
,
Jinjun
,
Z.
,
Nan
,
Y.
, and
Zongjie
,
Z.
,
2016
, “
Research on Reliability Assessment Methods for Large Gas Pipeline Network
,”
Oil Gas Storage Transp.
,
35
(
1
), pp.
7
15
.
3.
Muwei
,
F.
,
Jing
,
G.
,
Yang
,
W.
, and
Wenhui
,
K.
,
2018
, “
Sensitivity Analysis on the Gas Supply Reliability of Shaanxi-Beijing Natural Gas Pipeline Network System
,”
Oil Gas Storage Transp.
,
37
(
4
), pp.
378
384
.
4.
Yu
,
W.
,
Wen
,
K.
,
Li
,
Y.
,
Huang
,
W.
, and
Gong
,
J.
,
2018
, “
A Methodology to Assess the Gas Supply Capacity and Gas Supply Reliability of a Natural Gas Pipeline Network System
,”
ASME
Paper No. IPC2018-78173.10.1115/IPC2018-78173
5.
Yu
,
W.
,
Huang
,
W.
,
Liu
,
H.
,
Wang
,
K.
,
Wen
,
K.
,
Gong
,
J.
, and
Zhang
,
M.
,
2020
, “
A Systematic Method for Assessing the Operating Reliability of the Underground Gas Storage in Multiple Salt Caverns
,”
J. Energy Storage
,
31
, p.
101675
.10.1016/j.est.2020.101675
6.
Yu
,
W.
,
Zhang
,
J.
,
Wen
,
K.
,
Huang
,
W.
,
Min
,
Y.
,
Li
,
Y.
,
Yang
,
X.
, and
Gong
,
J.
,
2019
, “
A Novel Methodology to Update the Reliability of the Corroding Natural Gas Pipeline by Introducing the Effects of Failure Data and Corrective Maintenance
,”
Int. J. Pressure Vessels Piping
,
169
, pp.
48
56
.10.1016/j.ijpvp.2018.11.001
7.
Kai
,
W.
,
Wenwei
,
Z.
,
Jing
,
G.
,
Hengdong
,
L.
,
Zhenyong
,
Z.
, and
Boyuan
,
Z.
,
2014
, “
Computation of Gas Pipeline Reliability
,”
Oil Gas Storage Transp.
,
33
(
7
), pp.
729
733
.
8.
Mingfei
,
L.
,
Xiangdong
,
X.
,
Jian
,
M.
,
Yuheng
,
Z.
,
Luning
,
X.
,
Honglong
,
Z.
,
Muyang
,
A.
, and
Linjie
,
D.
,
2019
, “
A Reliability Evaluation System of Complex Gas Pipeline Network System in the Operation Period
,”
Oil Gas Storage Transp.
,
38
(
7
), pp.
738
744
.
9.
Li
,
J.
,
Qin
,
C.
,
Yan
,
M.
,
Ma
,
J.
, and
Yu
,
J.
,
2016
, “
Hydraulic Reliability Analysis of an Urban Loop High-Pressure Gas Network
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
372
378
.10.1016/j.jngse.2015.12.010
10.
Liang
,
G.
,
Luo
,
M.
,
Zhang
,
C.
,
Pu
,
H.
, and
Zheng
,
Y.
,
2006
, “
Analysis Methods for Hydraulic Reliability of Gas Transmission Pipeline Networks
,”
Nat. Gas Ind.
,
26
(
4
), pp.
125
127
.
11.
Sukharev
,
M. G.
, and
Karasevich
,
A. M.
,
2010
, “
Reliability Models for Gas Supply Systems
,”
Autom. Remote Control
,
71
(
7
), pp.
1415
1424
.10.1134/S0005117910070155
12.
Vasconcelos
,
C. D.
,
Lourenço
,
S. R.
,
Gracias
,
A. C.
, and
Cassiano
,
D. A.
,
2013
, “
Network Flows Modeling Applied to the Natural Gas Pipeline in Brazil
,”
J. Nat. Gas Sci. Eng.
,
14
, pp.
211
224
.10.1016/j.jngse.2013.07.001
13.
Tran
,
T. H.
,
French
,
S.
,
Ashman
,
R.
, and
Kent
,
E.
,
2018
, “
Impact of Compressor Failures on Gas Transmission Network Capability
,”
Appl. Math. Modell.
,
55
, pp.
741
757
.10.1016/j.apm.2017.11.034
14.
Yu
,
W.
,
Wen
,
K.
,
Min
,
Y.
,
He
,
L.
,
Huang
,
W.
, and
Gong
,
J.
,
2018
, “
A Methodology to Quantify the Gas Supply Capacity of Natural Gas Transmission Pipeline System Using Reliability Theory
,”
Reliab. Eng. Syst. Saf.
,
175
, pp.
128
141
.10.1016/j.ress.2018.03.007
15.
Praks
,
P.
, and
Kopustinskas
,
V.
,
2014
, “
Monte Carlo Based Reliability Modelling of a Gas Network Using Graph Theory Approach
,”
Ninth International Conference on Availability, Reliability and Security
, Fribourg, Switerland, Sept. 8–12, pp.
380
386
.10.1109/ARES.2014.57
16.
Praks
,
P.
,
Kopustinskas
,
V.
, and
Masera
,
M.
,
2015
, “
Probabilistic Modelling of Security of Supply in Gas Networks and Evaluation of New Infrastructure
,”
Reliab. Eng. Syst. Saf.
,
144
, pp.
254
264
.10.1016/j.ress.2015.08.005
17.
Su
,
H.
,
Zhang
,
J.
,
Zio
,
E.
,
Yang
,
N.
,
Li
,
X.
, and
Zhang
,
Z.
,
2018
, “
An Integrated Systemic Method for Supply Reliability Assessment of Natural Gas Pipeline Networks
,”
Appl. Energy
,
209
, pp.
489
501
.10.1016/j.apenergy.2017.10.108
18.
Monforti
,
F.
, and
Szikszai
,
A.
,
2010
, “
A MonteCarlo Approach for Assessing the Adequacy of the European Gas Transmission System Under Supply Crisis Conditions
,”
Energy Policy
,
38
(
5
), pp.
2486
2498
.10.1016/j.enpol.2009.12.043
19.
Szikszai
,
A.
, and
Monforti
,
F.
,
2011
, “
GEMFLOW: A Time Dependent Model to Assess Responses to Natural Gas Supply Crises
,”
Energy Policy
,
39
(
9
), pp.
5129
5136
.10.1016/j.enpol.2011.05.051
20.
Rodríguez-Gómez
,
N.
,
Zaccarelli
,
N.
, and
Bolado-Lavín
,
R.
,
2016
, “
European Ability to Cope With a Gas Crisis. Comparison Between 2009 and 2014
,”
Energy Policy
,
97
, pp.
461
474
.10.1016/j.enpol.2016.07.016
21.
Olanrewaju
,
O. T.
,
Chaudry
,
M.
,
Qadrdan
,
M.
,
Wu
,
J.
, and
Jenkins
,
N.
,
2015
, “
Vulnerability Assessment of the European Natural Gas Supply
,”
Proc. Inst. Civ. Eng.: Energy
,
168
(
1
), pp.
5
15
.10.1680/ener.14.00020
22.
Shaikh
,
F.
,
Ji
,
Q.
, and
Fan
,
Y.
,
2016
, “
Evaluating China's Natural Gas Supply Security Based on Ecological Network Analysis
,”
J. Cleaner Prod.
,
139
, pp.
1196
1206
.10.1016/j.jclepro.2016.09.002
23.
Shaikh
,
F.
,
Qiang
,
J.
, and
Ying
,
F.
,
2017
, “
An Ecological Network Analysis of the Structure, Development and Sustainability of China's Natural Gas Supply System Security
,”
Ecol. Indic.
,
73
, pp.
235
246
.10.1016/j.ecolind.2016.09.051
24.
Su
,
M.
,
Zhang
,
M.
,
Lu
,
W.
,
Chang
,
X.
,
Chen
,
B.
,
Liu
,
G.
,
Hao
,
Y.
, and
Zhang
,
Y.
,
2017
, “
ENA-Based Evaluation of Energy Supply Security: Comparison Between the Chinese Crude Oil and Natural Gas Supply Systems
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
888
899
.10.1016/j.rser.2017.01.131
25.
Lu
,
W.
,
Su
,
M.
,
Fath
,
B. D.
,
Zhang
,
M.
, and
Hao
,
Y.
,
2016
, “
A Systematic Method of Evaluation of the Chinese Natural Gas Supply Security
,”
Appl. Energy
,
165
, pp.
858
867
.10.1016/j.apenergy.2015.12.120
26.
Faertes
,
D.
,
Domingues
,
J.
, and
Oliveira
,
L.
,
2006
, “
Transpetro Southeast Gas Security of Supply Study
,”
ASME
Paper No. IPC2006-10383.10.1115/IPC2006-10383
27.
Faertes
,
D.
,
Saker
,
L.
,
Heil
,
L.
,
Vieira
,
F.
,
Risi
,
F.
,
Domingues
,
J.
,
Alvarenga
,
T.
,
Mussel
,
P.
, and
Carvalho
,
E.
,
2010
, “
Reliability Modelling: Petrobras 2010 Integrated Gas Supply Chain
,”
ASME
Paper No. IPC2010-31309.10.1115/IPC2010-31309
28.
Chaudry
,
M.
,
Wu
,
J.
, and
Jenkins
,
N.
,
2013
, “
A Sequential Monte Carlo Model of the Combined GB Gas and Electricity Network
,”
Energy Policy
,
62
(
9
), pp.
473
483
.10.1016/j.enpol.2013.08.011
29.
Fan
,
M.
,
Gong
,
J.
,
Wu
,
Y.
, and
Kong
,
W.
,
2017
, “
Gas Supply Reliability Analysis of the Shaanxi–Beijing Gas Pipeline Network Based on the Simplified Topological Structure
,”
Nat. Gas Ind.
, 37(4), pp.
123
129
.
30.
Fan
,
M.-W.
,
Gong
,
J.
,
Wu
,
Y.
, and
Kong
,
W.-H.
,
2017
, “
The Gas Supply Reliability Analysis of Natural Gas Pipeline Network Based on Simplified Topological Structure
,”
J. Renewable Sustainable Energy
,
9
(
4
), p.
045503
.10.1063/1.4997490
31.
Yu
,
W.
,
Song
,
S.
,
Li
,
Y.
,
Min
,
Y.
,
Huang
,
W.
,
Wen
,
K.
, and
Gong
,
J.
,
2018
, “
Gas Supply Reliability Assessment of Natural Gas Transmission Pipeline Systems
,”
Energy
,
162
, pp.
853
870
.10.1016/j.energy.2018.08.039
32.
Eser
,
P.
,
Chokani
,
N.
, and
Abhari
,
R.
,
2019
, “
Impact of Nord Stream 2 and LNG on Gas Trade and Security of Supply in the European Gas Network of 2030
,”
Appl. Energy
,
238
, pp.
816
830
.10.1016/j.apenergy.2019.01.068
33.
Thaler
,
M.
,
Grabec
,
I.
, and
Poredoš
,
A.
,
2005
, “
Prediction of Energy Consumption and Risk of Excess Demand in a Distribution System
,”
Phys. A Stat. Mech. Appl.
,
355
(
1
), pp.
46
53
.10.1016/j.physa.2005.02.066
34.
Szoplik
,
J.
,
2015
, “
Forecasting of Natural Gas Consumption With Artificial Neural Networks
,”
Energy
,
85
, pp.
208
220
.10.1016/j.energy.2015.03.084
35.
Yu
,
W.
,
Gong
,
J.
,
Song
,
S.
,
Huang
,
W.
,
Li
,
Y.
,
Zhang
,
J.
,
Hong
,
B.
,
Zhang
,
Y.
,
Wen
,
K.
, and
Duan
,
X.
,
2019
, “
Gas Supply Reliability Analysis of a Natural Gas Pipeline System Considering the Effects of Underground Gas Storages
,”
Appl. Energy
,
252
, p.
113418
.10.1016/j.apenergy.2019.113418
36.
Pambour
,
K. A.
,
Cakir Erdener
,
B.
,
Bolado-Lavin
,
R.
, and
Dijkema
,
G. P. J.
,
2017
, “
SAInt—A Novel Quasi-Dynamic Model for Assessing Security of Supply in Coupled Gas and Electricity Transmission Networks
,”
Appl. Energy
,
203
, pp.
829
857
.10.1016/j.apenergy.2017.05.142
37.
Pambour
,
K. A.
,
Bolado-Lavin
,
R.
, and
Dijkema
,
G. P. J.
,
2016
, “
An Integrated Transient Model for Simulating the Operation of Natural Gas Transport Systems
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
672
690
.10.1016/j.jngse.2015.11.036
38.
Yu
,
W.
,
Min
,
Y.
,
Huang
,
W.
,
Wen
,
K.
,
Zhang
,
Y.
, and
Gong
,
J.
,
2018
, “
An Integration Method for Assessing the Operational Reliability of Underground Gas Storage in a Depleted Reservoir
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), pp.
031701
031708
.10.1115/1.4039070
39.
Behrooz
,
H. A.
,
2016
, “
Managing Demand Uncertainty in Natural Gas Transmission Networks
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
100
111
.10.1016/j.jngse.2016.06.051
You do not currently have access to this content.