The creep behavior of a pressurized tank, which is assumed to be made of functionally graded materials, is studied in this paper. The elastic response under the internal and external pressures is first obtained when Young’s modulus obeys a power function along with the wall thickness. If the creep exponent remains constant and the creep coefficient varies with the radial coordinate, a closed-form solution can be derived for the time-dependent behavior of the spherical tank. The effects of material gradients on the creep stress and strain are investigated in detail. The results show that the stress level under the steady creep state is determined by the distribution of the creep properties. However, the magnitude of the creep strain is influenced by the elastic modulus distribution, as well as the creep property distribution inside the functionally graded materials. Compared with the finite element analysis results, the optimum time step value is also investigated. Some fundamental knowledge of the materials distribution is achieved to reduce the maximum creep stress/strain and to uniformize the stress level inside the functionally graded materials tank.

1.
Tanigawa
,
Y.
, 1995, “
Some Basic Thermoelastic Problems for Nonhomogeneous Structural Materials
,”
Appl. Mech. Rev.
0003-6900,
48
(
6
), pp.
287
300
.
2.
Williamson
,
R. L.
,
Rabin
,
B. H.
, and
Drake
,
J. T.
, 1993, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces. Part I. Model Description and Geometrical Effects
,”
J. Appl. Phys.
0021-8979,
74
(
2
), pp.
1310
1320
.
3.
Drake
,
J. T.
,
Williamson
,
R. L.
, and
Rabin
,
B. H.
, 1993, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces. Part II. Interface Optimization for Residual Stress Reduction
,”
J. Appl. Phys.
0021-8979,
74
(
2
), pp.
1321
1326
.
4.
Chiu
,
T. -C.
, and
Erdogan
,
F.
, 2003, “
Debonding of Graded Coatings Under In-Plane Compression
,”
Int. J. Solids Struct.
0020-7683,
40
(
25
), pp.
7155
7179
.
5.
Erdogan
,
F.
, and
Chiu
,
T. -C.
, 2003, “
The Influence of Bond Coat and Oxide Layer on the Debonding of Graded Coatings
,”
Mater. Sci. Forum
0255-5476,
423–425
, pp.
523
528
.
6.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
0961-9526,
5
(
7
), pp.
753
770
.
7.
Jin
,
Z. -H.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, Jr.
, 2003, “
Cohesive Fracture Modeling of Elastic-Plastic Crack Growth in Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
70
(
14
), pp.
1885
1912
.
8.
Wang
,
B. L.
,
Mai
,
Y. -W.
, and
Noda
,
N.
, 2004, “
Fracture Mechanics Analysis Models for Functionally Graded Materials With Arbitrarily Distributed Properties (Modes II and III Problems)
,”
Int. J. Fract.
0376-9429,
126
(
4
), pp.
307
320
.
9.
Chen
,
J. J.
, and
Tu
,
S. T.
, 2004, “
Creep Fracture Parameters of Functionally Graded Coating
,”
J. Chin. Inst. Eng.
0253-3839,
27
(
6
), pp.
805
812
.
10.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
,
W. P.
, Jr.
, 1995, “
Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
0022-2461,
30
(
9
), pp.
2183
2193
.
11.
Tanakak
,
K.
, 1996, “
Mechanics of Functionally Gradient Materials: Material Tailoring on the Micro- and Macro-Levels
,”
Theoretical and Applied Mechanics
,
E.
Watanabe
,
T.
Tatsumi
, and
T.
Kambi
, eds.,
Elsevier
,
Amsterdam
, pp.
253
268
.
12.
Obata
,
Y.
, and
Noda
,
N.
, 1994, “
Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material
,”
J. Therm. Stresses
0149-5739,
17
(
3
), pp.
471
487
.
13.
Kim
,
K. -S.
, and
Noda
,
N.
, 2002, “
Green’s Function Approach to Unsteady Thermal Stresses in an Infinite Hollow Cylinder of Functionally Graded Material
,”
Acta Mech.
0001-5970,
156
(
3–4
), pp.
145
161
.
14.
Liew
,
K. M.
,
Kitipornchai
,
S.
,
Zhang
,
X. Z.
, and
Lim
,
C. W.
, 2003, “
Analysis of the Thermal Stress Behaviour of Functionally Graded Hollow Circular Cylinders
,”
Int. J. Solids Struct.
0020-7683,
40
(
10
), pp.
2355
2380
.
15.
Horgan
,
C. O.
, and
Chan
,
A. M.
, 1999, “
Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials
,”
J. Elast.
0374-3535,
55
(
1
), pp.
43
59
.
16.
Chen
,
W. Q.
, 2000, “
Stress Distribution in a Rotating Elastic Functionally Graded Material Hollow Sphere With Spherical Isotropy
,”
J. Strain Anal. Eng. Des.
0309-3247,
35
(
1
), pp.
13
20
.
17.
Tutuncu
,
N.
, and
Ozturk
,
M.
, 2001, “
Exact Solutions for Stresses in Functionally Graded Pressure Vessels
,”
Composites, Part B
1359-8368,
32
(
8
), pp.
683
686
.
18.
Martin
,
P. A.
, 2002, “
On Functionally Graded Balls and Cones
,”
J. Eng. Math.
0022-0833,
42
(
2
), pp.
133
142
.
19.
You
,
L. H.
,
Zhang
,
J. J.
, and
You
,
X. Y.
, 2005, “
Elastic Analysis of Internally Pressurized Thick-Walled Spherical Pressure Vessels of Functionally Graded Materials
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
(
5
), pp.
347
354
.
20.
Shahsiah
,
R.
,
Eslami
,
M. R.
, and
Naj
,
R.
, 2006, “
Thermal Instability of Functionally Graded Shallow Spherical Shell
,”
J. Therm. Stresses
0149-5739,
29
(
8
), pp.
771
790
.
21.
Yang
,
Y. Y.
, 2000, “
Time-Dependent Stress Analysis in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
37
(
51
), pp.
7593
7608
.
22.
Singh
,
S. B.
, and
Ray
,
S.
, 2001, “
Steady-State Creep Behavior in an Isotropic Functionally Graded Material Rotating Disc of Al-Sic Composite
,”
Metall. Mater. Trans. A
1073-5623,
32
(
7
), pp.
1679
1685
.
23.
Gupta
,
V. K.
,
Singh
,
S. B.
,
Chandrawat
,
H. N.
, and
Ray
,
S.
, 2005, “
Modeling of Creep Behavior of a Rotating Disc in the Presence of Both Composition and Thermal Gradients
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
(
1
), pp.
97
105
.
24.
Cormeau
,
I.
, 1975, “
Numerical Stability in Quasi-Static Elasto/Visco-Plasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
9
(
1
), pp.
109
127
.
25.
ABAQUS Inc.
, 1996, ABAQUS VERSION 6.5, ABAQUs Analysis User’s Manual.
You do not currently have access to this content.