Two-dimensional finite element analyses are performed to study the crack-tip constraint in an elastic-plastic, three point bend specimen under dynamic load. Both strain rate-independent and strain rate-dependent materials are considered to elucidate the difference in response due to the material rate effect. It is first demonstrated that the crack-tip stress fields can be adequately characterized by the J-A2 three-term solution within the region of interest 1<r/(J/σo)<5. Consequently, A2 is used as a constraint parameter in constraint evaluations. Results show that the crack-tip constraint decreases with increasing loading rate in rate-independent material. On the other hand, in rate-dependent material, the crack-tip constraint first increases at low loading rate but later decreases at high loading rate. It appears that there is a competition between constraint loss due to dynamic load and constraint gain due to material sensitivity to strain rate. The effect of crack-tip constraint on fracture initiation toughness under dynamic load Kdyn is then studied using a critical stress failure criterion. The results are consistent with experimental data in (a) reduced dynamic fracture initiation toughness, as compared with the static fracture toughness, at low loading rate such as those obtained by ASTM E23 Charpy tests and (b) elevated fracture toughness at high loading rate as frequently reported by experimental researchers.

1.
Rolfe
,
S. T.
, and
Barsom
,
J. M.
, 1977,
Fracture and Fatigue Control in Structures—Applications of Fracture Mechanics
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
92
139
.
2.
Venkert
,
A.
,
Guduru
,
P. R.
, and
Ravichandran
,
G.
, 2001, “
Effect of Loading Rate on Fracture Morphology in a High Strength Ductile Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
261
267
.
3.
Kalthoff
,
J. F.
, 1986, “
Fracture Behavior Under High Rates of Loading
,”
Eng. Fract. Mech.
0013-7944,
23
, pp.
289
298
.
4.
Zehnder
,
A. T.
,
Rosakis
,
A. J.
, and
Krishnaswamy
,
S.
, 1990, “
Dynamic Measurement of the J Integral in Ductile Metals: Comparison of Experimental and Numerical Techniques
,”
Int. J. Fract.
0376-9429,
42
, pp.
209
230
.
5.
Chao
,
Y. J.
, and
Zhang
,
X.
, 1997, “
Constraint Effect in Brittle Fracture
,”
Fatigue and Fracture Mechanics: 27th Volume, ASTM STP 1296
,
R.
Piascik
, ed.,
American Society for Testing and Materials
,
Philadelphia
, pp.
41
60
.
6.
Chao
,
Y. J.
, and
Reuter
,
W. G.
, 1997, “
Fracture of Surface Cracks Under Bending Loads
,”
Fatigue and Fracture Mechanics: 28th Volume, ASTM STP 1321, J. H. Underwood
,
B.
MacDonald
and
M.
Mitchell
, eds.,
American Society for Testing and Materials
,
Philadelphia
, pp.
214
242
.
7.
Chao
,
Y. J.
,
Liu
,
S.
, and
Broviak
,
B. J.
, 2001, “
Brittle Fracture: Variation of Fracture Toughness With Constraint and Crack Curving Under Mode-I Conditions
,”
Exp. Mech.
0014-4851,
41
, pp.
232
241
.
8.
Larsson
,
S. G.
, and
Carlsson
,
A. J.
, 1973, “
Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
21
, pp.
263
277
.
9.
Betegon
,
C.
, and
Hancock
,
J. W.
, 1991, “
Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
104
110
.
10.
Al-Ani
,
A. M.
, and
Hancock
,
J. W.
, 1991, “
J-Dominance of Short Cracks in Tension and Bending
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
23
43
.
11.
Sharma
,
S. M.
, and
Aravas
,
N.
, 1991, “
Determination of Higher-Order Terms in Asymptotic Elastoplastic Crack Tip Solutions
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
1043
1072
.
12.
Hutchinson
,
J. W.
, 1968, “
Singular Behavior at the End of a Tensile Crack Tip in a Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
13
31
.
13.
Rice
,
J. R.
, and
Rosengren
,
G. F.
, 1968, “
Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
1
12
.
14.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1991, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter—I. Structure of Fields
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
989
1015
.
15.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1992, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter—II. Fracture Applications
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
939
963
.
16.
Nikishkov
,
G. P.
,
Bruckner-Foit
,
A.
, and
Munz
,
D.
, 1995, “
Calculation of the Second Fracture Parameter for Finite Cracked Bodies Using a Three-Term Elastic-Plastic Asymptotic Expansion
,”
Eng. Fract. Mech.
0013-7944,
52
, pp.
685
701
.
17.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1994, “
Two-Parameter Fracture Mechanics: Theory and Applications
,”
Fracture Mechanics, ASTM STP 1207
,
J. D.
Lands
,
D. E.
McCabe
, and
J. A. M.
Boulet
, eds.,
American Society for Testing and Materials
,
Philadelphia
, pp.
21
47
.
18.
Yang
,
S.
,
Chao
,
Y. J.
, and
Sutton
,
M. A.
, 1993, “
Higher Order Asymptotic Fields in a Power Law Hardening Material
,”
Eng. Fract. Mech.
0013-7944,
45
, pp.
1
20
.
19.
Yang
,
S.
,
Chao
,
Y. J.
, and
Sutton
,
M. A.
, 1993, “
Complete Theoretical Analysis for Higher Order Asymptotic Terms and the HRR Zone at a Crack Tip for Mode I and Mode II Loading of a Hardening Materials
,”
Acta Mech.
0001-5970,
98
, pp.
79
98
.
20.
Chao
,
Y. J.
,
Yang
,
S.
, and
Sutton
,
M. A.
, 1994, “
On the Fracture of Solids Characterized by One or Two Parameters: Theory and Practice
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
629
647
.
21.
Chao
,
Y. J.
, and
Zhu
,
X. K.
, 1998, “
J-A2 Characterization of Crack-Tip Fields: Extent of J-A2 Dominance and Size Requirements
,”
Int. J. Fract.
0376-9429,
89
, pp.
285
307
.
22.
Zhu
,
X. K.
, and
Chao
,
Y. J.
, 1999, “
Characterization of Constraint of Fully Plastic Crack-Tip Fields in Non-Hardening Materials by the Three-Term Solution
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
4497
4517
.
23.
Chao
,
Y. J.
, and
Zhu
,
X. K.
, 2000, “
Constraint-Modified J-R Curves and Its Application to Ductile Crack Growth
,”
Int. J. Fract.
0376-9429,
105
, pp.
187
207
.
24.
Chao
,
Y. J.
,
Zhu
,
X. K.
,
Lam
,
P. S.
,
Louthan
,
M. R.
, and
Iyer
,
N. C.
, 2000, “
Application of the Two-Parameter J-A2
Description to Ductile Crack Growth,”
Fatigue and Fracture Mechanics, ASTM STP 1389
,
G. R.
Halford
and
J. P.
Gallagher
, eds.,
American Society of Testing and Materials
,
West Conshohocken, PA
, pp.
165
182
.
25.
Nguyen
,
B. N.
,
Onck
,
P.
, and
van der Giessen
,
E.
, 2000, “
Crack-Tip Constraint Effects on Creep Fracture
,”
Eng. Fract. Mech.
0013-7944,
65
, pp.
467
490
.
26.
Chao
,
Y. J.
,
Zhu
,
X. K.
, and
Zhang
,
L.
, 2001, “
Higher-Order Asymptotic Crack-Tip Fields in a Power-Law Creeping Material
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3853
3875
.
27.
Anderson
,
T. L.
, 1995, “
Dynamic and Time-Dependent Fracture
,” in
Fracture Mechanics, Fundamentals and Applications
,
CRC Press
,
Boca Raton, USA
, pp.
205
260
.
28.
Sih
,
G. C.
, 1968, “
Some Elastodynamic Problems of Cracks
,”
Int. J. Fract.
0376-9429,
4
, pp.
51
68
.
29.
Ravera
,
R. J.
, and
Sih
,
G. C.
, 1970, “
Transient Analysis of Stress Waves Around Cracks Under Antiplane Strain
,”
J. Acoust. Soc. Am.
0001-4966,
47
, pp.
875
880
.
30.
Sih
,
C. G.
,
Embley
,
G. T.
, and
Ravera
,
R. J.
, 1972, “
Impact Response of a Plane Crack in Extension
,”
Int. J. Solids Struct.
0020-7683,
8
, pp.
977
993
.
31.
Achenbach
,
J. D.
, 1970, “
Brittle and Ductile Extension of a Finite Crack by a Horizontally Polarized Shear Wave
,”
Int. J. Eng. Sci.
0020-7225,
8
, pp.
947
966
.
32.
Achenbach
,
J. D.
, 1972, “
Dynamic Effects in Brittle Fracture
,”
Mechanics Today
,
S. C.
Nemat-Nasser
, ed.,
Pergamon
,
New York
, Vol.
1
.
33.
Kalthoff
,
J. F.
, and
Shockey
,
D. A.
, 1977, “
Instability of Cracks Under Impulse Loads
,”
J. Appl. Phys.
0021-8979,
48
(
3
), pp.
986
993
.
34.
Shockey
,
D. A.
,
Erlich
,
D. C.
,
Kalthoff
,
J. F.
, and
Homma
,
H.
, 1986, “
Short-Pulse Fracture Mechanics
,”
Eng. Fract. Mech.
0013-7944,
23
(
1
), pp.
311
319
.
35.
Petrov
,
Y. V.
, and
Morozov
,
N. F.
, 1994, “
On the Modeling of Fracture of Brittle Solids
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
710
712
.
36.
Petrov
,
Y. V.
,
Morozov
,
N. F.
, and
Smirnov
,
V. I.
, 2003, “
Structural Macromechanics Approach in Dynamics of Fracture
,”
Fatigue Fract. Eng. Mat. Struct.
,
26
, pp.
363
372
.
37.
Petrov
,
Y. V.
, and
Sitnikova
,
E.
, 2005, “
Temperature Dependence of Spall Strength and the Effect of Anomalous Melting Temperature in Shock-Wave Loading
,”
Tech. Phys.
1063-7842,
50
, pp.
1034
1037
.
38.
Jayadevan
,
K. R.
,
Narasimhan
,
R.
,
Ramamurthy
,
T. S.
, and
Dattaguru
,
B.
, 2001, “
A Numerical Study of T-Stress in Dynamically Loaded Fracture Specimens
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4987
5005
.
39.
Williams
,
M. L.
, 1957, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
0021-8936,
24
, pp.
109
114
.
40.
Kim
,
Y.
, and
Chao
,
Y. J.
, 2007, “
Effect of Loading Rate on Dynamic Fracture Initiation Toughness of Brittle Materials
,”
Int. J. Fract.
0376-9429,
145
, pp.
195
204
.
41.
Jayadevan
,
K. R.
,
Narasimhan
,
R.
,
Ramamurthy
,
T. S.
, and
Dattaguru
,
B.
, 2002, “
Constraint Loss Under Dynamic Loading in Rate Independent Plastic Solids
,”
Int. J. Fract.
0376-9429,
116
, pp.
141
160
.
42.
Basu
,
S.
, and
Narasimhan
,
R.
, 2000, “
A Numerical Investigation of Loss of Crack Tip Constraint in a Dynamically Loaded Ductile Specimen
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1967
1985
.
43.
Biswas
,
P.
, and
Narasimhan
,
R.
, 2002, “
A Numerical Study of Constraint Effects on Dynamic Ductile Crack Initiation
,”
Mech. Mater.
0167-6636,
34
, pp.
577
592
.
44.
Jayadevan
,
K. R.
,
Narasimhan
,
R.
,
Ramamurthy
,
T. S.
, and
Dattaguru
,
B.
, 2002b, “
Effect of T-Stress and Loading Rate on Crack Initiation in Rate Sensitive Plastic Materials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
1757
1775
.
45.
Koppenhoefer
,
K. C.
, and
Dodds
,
R. H.
, 1996, “
Constraint Effect on Fracture Toughness of Impact-Loaded, Pre-Cracked Charpy Specimens
,”
Nucl. Eng. Des.
0029-5493,
162
, pp.
145
158
.
46.
Sih
,
G. C.
, and
Loeber
,
J. F.
, 1969, “
Wave Propagation in an Elastic Solid With a Line of Discontinuity or Finite Crack
,”
Q. Appl. Math.
0033-569X,
27
, pp.
193
213
.
47.
Deng
,
X.
, 1994, “
The Asymptotic Structure of Transient Elastodynamic Fields as the Tip of a Stationary Crack
,”
Proc. R. Soc. London, Ser. A
0950-1207,
446
, pp.
1
13
.
48.
Rosakis
,
A. J.
, and
Freund
,
L. B.
, 1981, “
The Effect of Crack Tip Plasticity on the Determination of Dynamic Stress Intensity Factors by the Optical Method of Caustics
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
302
308
.
49.
Chao
,
Y. J.
, and
Zhang
,
L.
, 1997b, “
Tables of Plane Strain Crack Tip Fields: HRR and Higher Order Terms
,” ME-Report No. 97-1, Department of Mechanical Engineering, University of South Carolina.
50.
Theiss
,
T. J.
,
Shum
,
D. K.
, and
Rolfe
,
S. T.
, 1992, “
Experimental and Analytical Investigation of the Shallow-Flaw Effect in Reactor Pressure Vessels
,” NUREG/CR-5886, ORNL/TM-12115, Oak Ridge National Laboratory.
51.
Chao
,
Y. J.
, and
Lam
,
P. S.
, 1996, “
Effects of Crack Depth, Specimen Size, and Out-of-Plane Stress on the Fracture Toughness of Reactor Vessel Steels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
118
, pp.
415
423
.
52.
Chen
,
Z. -A.
,
Zhen
,
Z.
, and
Chao
,
Y. J.
, 2007, “
Effect of Crack Depth on the Shift of the Ductile-Brittle Transition Curve of Steels
,”
Eng. Fract. Mech.
0013-7944,
74
, pp.
2437
2448
.
53.
Zehnder
,
A. T.
, and
Rosakis
,
A. J.
, 1990, “
Dynamic Fracture Initiation and Propagation in 4340 Steel Under Impact Loading
,”
Int. J. Fract.
0376-9429,
43
, pp.
271
285
.
54.
Koppenhoefer
,
K. C.
,
Gullerud
,
A. S.
,
Ruggieri
,
C.
, and
Dodds
,
R. H.
, 1994, “
WARP3D: Dynamic Nonlinear Analysis of Solids Using a Preconditioned Conjugate Gradient Software Architecture
,” Civil Engineering Studies, SRS 596, UILU-ENG-94-2017, University of Illinois, Urbana, Ill.
55.
Nakamura
,
T.
,
Shih
,
C. F.
, and
Freund
,
L. B.
, 1986, “
Analysis of a Dynamically Loaded Three-Point Bend Ductile Fracture Specimen
,”
Eng. Fract. Mech.
0013-7944,
25
, pp.
323
339
.
56.
Ritchie
,
R. O.
,
Knott
,
J. F.
, and
Rice
,
J. R.
, 1973, “
On the Relationship Between Critical Tensile Stress and Fracture Toughness in Mild Steel
,”
J. Mech. Phys. Solids
0022-5096,
21
, pp.
395
410
.
57.
Costin
,
L. S.
, and
Duffy
,
J.
, 1979, “
The Effect of Loading Rate and Temperature on the Initiation of Fracture in a Mild, Rate-Sensitive Steel
,”
ASME J. Eng. Mat. Technol.
,
101
, pp.
258
264
.
58.
Owen
,
D.
,
Zhuang
,
S.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
, 1998, “
Experimental Determination of Dynamic Crack Initiation and Propagation Fracture Toughness in Thin Aluminum Steels
,”
Int. J. Fract.
0376-9429,
90
, pp.
153
174
.
59.
ASTM E23-07, 2007, “
Standard Test Method for Notched Bar Impact Testing of Metallic Materials
,” American Society for Testing and Materials, West Conshohocken, PA.
You do not currently have access to this content.