The technology of large scale hydrogen transmission from central production facilities to refueling stations and stationary power sites is at present undeveloped. Among the problems that confront the implementation of this technology is the deleterious effect of hydrogen on structural material properties, in particular, at gas pressures of the order of 15MPa, which are the suggested magnitudes by economic studies for efficient transport. In order to understand the hydrogen embrittlement conditions of the pipeline materials, we simulate hydrogen diffusion through the surfaces of an axial crack on the internal wall of a vessel coupled with material deformation under plane strain small scale yielding conditions. The calculation of the hydrogen accumulation ahead of the crack tip accounts for stress-driven transient diffusion of hydrogen and trapping at microstructural defects whose density evolves dynamically with deformation. The results are analyzed to correlate for a given material system the time after which hydrogen transport takes place under steady state conditions with the level of load in terms of the applied stress intensity factor at the crack tip and the size of the domain used for the simulation of the diffusion.

1.
Hirth
,
J. P.
, 1980, “
Effect of Hydrogen on the Properties of Iron and Steel
,”
Metall. Trans. A
0360-2133,
11
, pp.
861
890
.
2.
Birnbaum
,
H. K.
,
Robertson
,
I. M.
,
Sofronis
,
P.
, and
Teter
,
D.
, 1997, “
Mechanisms of Hydrogen Related Fracture—A Review
,”
Second International Conference on Corrosion Deformation Interactions, CDI’96
, Nice, France, Sept. 24–26, 1996,
T.
Magnin
, ed.,
The Institute of Materials
,
Great Britain
, pp.
172
195
.
3.
Thompson
,
A. W.
, 1977, “
Materials for Hydrogen Service
,”
Hydrogen: Its Technology and Implications
,
Transmission and Storage
, Vol.
2
,
K. E.
Cox
and
K. D.
Williamson
, eds.,
CRC
,
Cleveland, OH
, pp.
85
124
.
4.
Lee
,
T. D.
,
Goldenberg
,
T.
, and
Hirth
,
J. P.
, 1979, “
Effect of Hydrogen on Fracture of U-Notched Bend Specimens of Spheroidized AISI 1095 Steel
,”
Metall. Trans. A
0360-2133,
10
(
4
), pp.
199
208
.
5.
Onyewuenyi
,
O. A.
, and
Hirth
,
J. P.
, 1983, “
Effects of Hydrogen on Notch Ductility and Fracture in Spheroidized AISI 1090 Steel
,”
Metall. Trans. A
0360-2133,
14
(
2
), pp.
259
269
.
6.
Robinson
,
S. L.
, and
Stoltz
,
R. E.
, 1981, “
Toughness Losses and Fracture Behavior of Low Strength Carbon-Manganese Steels in Hydrogen
,”
Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of AIME
,
Warrendale, PA
, pp.
987
995
.
7.
Cialone
,
H. J.
, and
Holbrook
,
J. H.
, 1988, “
Sensitivity of Steels to Degradation in Gaseous Hydrogen
,”
Hydrogen Embrittlement: Prevention and Control
, (ASTM STP 962),
L.
Raymond
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
134
152
.
8.
Birnbaum
,
H. K.
, 1977, “
Hydrogen Related Failure Mechanisms in Metals
,”
Environmental Sensitive Fracture of Engineering Materials, Proceedings of Symposium on Environmental Effects on Fracture
,
Chicago, IL
, Oct. 24–26,
Z. A.
Foroulis
, ed.,
Metallurgical Society of AIME
,
Warendale, PA
, pp.
326
360
.
9.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
, 1994, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen Related Fracture
,”
Mater. Sci. Eng., A
0921-5093,
176
, pp.
191
202
.
10.
Kitagawa
,
H.
, and
Kojima
,
Y.
, 1983, “
Diffusion of Hydrogen Near an Elastoplastically Deformed Crack Tip
,”
Atomistic Fracture, Proceedings of a NATO Advanced Research Institute on Atomistics of Fracture
,
Calcatoggio, Corsica, France
, May 22–31 1981,
R. A.
Latanision
and
J. R.
Pickens
, eds., Plenum, New York, pp.
799
811
.
11.
Sofronis
,
P.
, and
McMeeking
,
R. M.
, 1989, “
Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip
,”
J. Mech. Phys. Solids
0022-5096,
37
(
3
), pp.
317
350
.
12.
Lufrano
,
J.
, and
Sofronis
,
P.
, 1999, “
Enhanced Hydrogen Concentration Ahead of Rounded Notches and Cracks—Competition Between Plastic Strain and Hydrogen Stress
,”
Acta Mater.
1359-6454,
46
(
5
), pp.
1519
1526
.
13.
Krom
,
A. H. M.
,
Koers
,
R. W. J.
, and
Bakker
,
A.
, 1999, “
Hydrogen Transport Near a Blunting Crack Tip
,”
J. Mech. Phys. Solids
0022-5096,
47
(
4
), pp.
971
992
.
14.
Taha
,
A.
, and
Sofronis
,
P.
, 2001, “
A Micromechanics Approach to the Study of Hydrogen Transport and Embrittlement
,”
Eng. Fract. Mech.
0013-7944,
68
(
6
), pp.
803
837
.
15.
Liang
,
Y.
, and
Sofronis
,
P.
, 2001, “
Toward a Phenomenological Description of Hydrogen-Induced Decohesion at Particle/Matrix Interfaces
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
1509
1531
.
16.
Liang
,
Y.
, and
Sofronis
,
P.
, 2003, “
Micromechanics and Numerical Modeling of the Hydrogen-Particle-Matrix Interactions in Nickel-Base Alloys
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
11
, pp.
523
551
.
17.
Liang
,
Y.
, and
Sofronis
,
P.
, 2004, “
On Hydrogen-Induced Void Nucleation and Grain Boundary Decohesion in Nickel-Base Alloys
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
368
377
.
18.
Serebrinsky
,
S.
,
Carter
,
E. A.
, and
Ortiz
,
M.
, 2004, “
A Quantum-Mechanically Informed Continuum Model of Hydrogen Embrittlement
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2403
2430
.
19.
Dadfarnia
,
M.
,
Sofronis
,
P.
,
Robertson
,
I. M.
,
Somerday
,
B. P.
,
Muralidharan
,
G.
, and
Stalheim
,
D.
, 2006, “
Numerical Simulation of Hydrogen Transport at a Crack Tip in a Pipeline Steel
,”
Proceedings of the Biennial International Pipeline Conference, IPC
,
Calgary, AB, Canada
, pp.
193
199
. Sept. 25–29, Paper No. IPC2006-102007.
20.
Dadfarnia
,
M.
,
Sofronis
,
P.
,
Robertson
,
I. M.
,
Somerday
,
B. P.
,
Muralidharan
,
G.
, and
Stalheim
,
D.
, 2006, “
Micromechanics of Hydrogen Transport and Embrittlement in Pipeline Steels
,”
2006 ASME International Mechanical Engineering Congress and Exposition
,
Chicago IL
, Nov. 5–10, Paper No. IMECE 2006-16325.
21.
Peisl
,
H.
, 1978, “
Lattice Strains Due to Hydrogen in Metals
,”
Hydrogen in Metals I
, (
Topics in Applied Physics
Vol.
28
),
G.
Alefeld
and
J.
Volkl
, eds.,
Springer-Verlag
,
New York
, pp.
53
74
.
22.
Robertson
,
I. M.
, 2001, “
The Effect of Hydrogen on Dislocation Dynamics
,”
Eng. Fract. Mech.
0013-7944,
68
(
6
), pp.
671
692
.
23.
Oriani
,
R. A.
, 1970, “
The Diffusion and Trapping of Hydrogen in Steel
,”
Acta Metall.
0001-6160,
18
(
1
), pp.
147
157
.
24.
Irwin
,
G. R.
, 1960, “
Fracture Mechanics
,”
Structural Mechanics, Proceedings of the First Symposium of Naval Structural Mechanics
,
J. N.
Goodier
and
N. J.
Hoff
, eds.,
Stanford University
, pp.
557
594
.
25.
Liang
,
Y.
,
Sofronis
,
P.
, and
Dodds
,
R. H.
, Jr.
, 2004, “
Interaction of Hydrogen With Crack-Tip Plasticity: Effects of Constraint on Void Growth
,”
Mater. Sci. Eng., A
0921-5093,
366
(
2
), pp.
397
411
.
26.
Dadfarnia
,
M.
,
Sofronis
,
P.
,
Robertson
,
I. M.
, and
Somerday
,
B. P.
, 2007, “
Hydrogen/Plasticity Interaction at Internal Cracks in Pipeline Steels
,”
Seventh International ASTM/ESIS Symposium on Fatigue and Fracture
,
Tampa, FL
, Nov.
27.
Dadfarnia
,
M.
,
Sofronis
,
P.
,
Somerday
,
B. P.
, and
Robertson
,
I. M.
, 2008, “
On the Small Scale Character of the Stress and Hydrogen Concentration Fields at the Tip of an Axial Crack in Steel Pipeline: Effect of Hydrogen-Induced Softening on Void Growth
,”
Int. J. Mater. Res.
1862-5282,
99
(
5
), pp.
557
570
.
28.
Kumnick
,
A. J.
, and
Johnson
,
H. H.
, 1980, “
Deep Trapping States for Hydrogen in Deformed Iron
,”
Acta Metall.
0001-6160,
28
(
1
), pp.
33
39
.
29.
Rice
,
J. R.
, and
Johnson
,
M. A.
, 1970, “
The Role of Large Crack Tip Geom-etry Changes in Plane Strain Fracture
,”
Inelastic Behavior of Solids
,
M. F.
Kanninen
,
W. F.
Adler
,
A. R.
Rosenfield
, and
R. I.
Jaffee
, eds.,
McGraw-Hill
,
New York
, pp.
641
672
.
30.
McMeeking
,
R. M.
, 1977, “
Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials and Implications for Fracture
,”
J. Mech. Phys. Solids
0022-5096,
25
, pp.
357
381
.
31.
Völkl
,
J.
, and
Alefeld
,
G.
, 1978, “
Diffusion of Hydrogen in Metals
,”
Hydrogen in Metals I
, (
Topics in Applied Physics
Vol.
28
),
G.
Alefeld
and
J.
Volkl
, eds.,
Springer-Verlag
,
New York
, pp.
53
74
.
32.
Raju
,
I. S.
, and
Newman
,
J. C.
, Jr.
, 1982, “
Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels
,”
ASME J. Pressure Vessel Technol.
0094-9930,
104
(
4
), pp.
293
299
.
You do not currently have access to this content.