Assessment of multiple discrete cracklike flaws is one of the most common problems relating to pressure vessels and piping components. Under the current fitness for service (FFS) rules, such as ASME, BS, and so on, multiple cracklike flaws are usually recharacterized as an enveloping crack (defined as a single larger crack), following their assessment rules. The procedure, however, varies significantly in these FFS codes. In this paper, the interaction between nonaligned multiple unequal cracks is clarified by applying the body force method. Based on the interaction that indicates the magnification and shielding effects and the reference stress solutions, a newly developed assessment procedure for multiple discrete cracklike flaws in the failure assessment diagram is proposed.

1.
2004, “
Assessment of Integrity of Structures Containing Defects
,” R6 revision 4, British Energy Generation Ltd.
2.
ASME
, 2004, Boiler and pressure vessel code, Document IWA-3300, American Society of Mechanical Engineers, Philadelphia, PA.
3.
2005, “
Guide on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures
,” BS7910, British Standards Institution.
4.
2007, “
Fitness For Service
,” API 579–1/ASME FFS-1, American Society of Mechanical Engineers, Philadelphia, PA.
5.
2007, FITNET FFS Procedure, prepared by European Fitness for Service Thematic Network, Contract No. GIRT-CT-2001–05071, European Framework.
6.
Nishitani
,
H.
, 1978,
Mechanics of Fracture
, Vol.
5
,
Noordhoff
,
Groningen
, Chap. 1.
7.
Ishida
,
M.
, 1969, “
Stress Intensity Factor Solutions for Two Inclined Cracks in Plate
,”
Trans. Jpn. Soc. Mech. Eng.
0375-9466,
36
(
277
), pp.
1815
1822
.
8.
Yokobori
,
T.
,
Uozumi
,
M.
, and
Ichikawa
,
M.
, 1971, “
Interaction between Non-Coplanar Parallel Staggered Elastic Cracks
,”
Reports of the Research Institute for Strength and Fracture of Materials
,
7
(
1
), pp.
25
47
.
9.
Murakami
,
Y.
, and
Nishitani
,
H.
, 1981, “
Stress Intensity Factor Solutions for Two Equal Semi-Elliptical Surface Cracks in Tension
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
47
(
415
), pp.
295
303
.
10.
Murakami
,
Y.
, and
Nemat-Nasser
,
S.
, 1982, “
Interacting Dissimilar Semi-Elastic Surface Flaws Under Tension and Bending
,”
Int. J. Fract.
0376-9429,
16
(
3
), pp.
373
386
.
11.
Kachanov
,
M.
, and
Laures
,
J. P.
, 1989, “
Three-Dimensional Problems of Strongly Interacting Arbitrarily Located Penny-Shaped Cracks
,”
Int. J. Fract.
0376-9429,
41
, pp.
289
313
.
12.
Isida
,
M.
,
Yoshida
,
T.
, and
Noguchi
,
H.
, 1991, “
Parallel Array of Semi-Elliptical Surface Cracks in Semi-Infinite Solid Under Tension
,”
Eng. Fract. Mech.
0013-7944,
39
(
5
), pp.
845
850
.
13.
Stonesifer
,
R. B.
,
Brust
,
F. W.
, and
Leis
,
B. N.
, 1993, “
Mixed-Mode Stress Intensity Factors for Interacting Semi-Elliptical Surface Cracks in a Plate
,”
Eng. Fract. Mech.
0013-7944,
45
(
3
), pp.
357
380
.
14.
Moussa
,
W. A.
,
Bell
,
R.
, and
Tan
,
C. L.
, 1999, “
The Interaction of Two Parallel Non-Coplanar Identical Surface Cracks Under Tension and Bending
,”
Int. J. Pressure Vessels Piping
0308-0161,
76
, pp.
135
145
.
15.
Kamaya
,
M.
, and
Kitamura
,
T.
, 2002, “
Stress Intensity Factors of Interacting Parallel Surface Cracks
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
68
(
671
), pp.
1112
1119
.
16.
Carpinteri
,
A.
,
Brighenti
,
R.
, and
Vantadori
,
S.
, 2004, “
A Numerical Analysis on the Interaction of Twin Coplanar Flaws
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
485
499
.
17.
Bezensek
,
B.
, and
Hancock
,
J. W.
, 2004, “
The Re-Characterization of Complex Defects, Part I: Fatigue and Ductile Tearing
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
981
1000
.
18.
Kamaya
,
M.
, 2008, “
Growth Evaluation of Multiple Interacting Surface Cracks, Part II: Growth Evaluation of Parallel Cracks
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
1350
1366
.
19.
Miyazaki
,
N.
,
Kaneko
,
H.
, and
Munakata
,
T.
, 1989, “
Stress Intensity Factor Analyses of Interacting Elliptical Cracks Using Line-Spring Boundary Element Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
38
, pp.
1
14
.
20.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
, 1996, “
Continued Validation of RSTRENG
,” Technology for Energy Pipelines, No. L51749.
21.
Hasegawa
,
K.
,
Saito
,
K.
,
Iwamatsu
,
F.
, and
Miyazaki
,
K.
, 2007, “
Prediction of Fully Plastic Failure Stresses for Pipes With Multiple Circumferential Flaws
,”
Proceedings of PVP
, Jul., pp.
22
26
, Paper No. PVP2007-26011.
22.
Bezensek
,
B.
, 2007, “
Flaw Alignment Criteria Based on Limit Load Solutions for Non-Aligned Through-Wall Flaws
,”
Proceedings of PVP
, Jul., pp.
22
26
, Paper No. PVP2007-26041.
23.
Kamaya
,
M.
, 2007, “
Interaction Effect of Twin Circumferential Surface Cracks on Limit Load of Pipe Under Tension
,”
Proceedings of PVP
, Jul., pp.
22
26
, Paper No. PVP2007-26221.
24.
Ranganath
,
S.
, and
Carter
,
R.
, 2007, “
Structural Capability of Austenitic Piping and Shells With Parallel Offset Cracks
,”
Proceedings of PVP
, Jul., pp.
22
26
, Paper No. PVP2007-26688.
25.
Tu
,
S. -T.
, and
Dai
,
S. -H.
, 1994, “
An Engineering Assessment of Fatigue Crack Growth of Irregularly Oriented Multiple Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
17
(
10
), pp.
1235
1246
.
26.
Marie
,
S.
,
Chapuliot
,
S.
,
Kayser
,
Y.
,
Lacire
,
M. H.
,
Drubay
,
B.
,
Barthelet
,
B.
,
Le Delliou
,
P.
,
Rougier
,
V.
,
Naudin
,
C.
,
Gilles
,
P.
, and
Triay
,
M.
, 2007, “
French RSE-M and RCC-MR Code Appendices for Flaw Analysis: Presentation of the Fracture Parameters Calculation-Part III: Cracked Pipes
,”
Int. J. Pressure Vessels Piping
0308-0161,
84
, pp.
614
658
.
27.
Ainsworth
,
R. A.
, 1986, “
The Treatment of Thermal and Residual Stresses in Fracture Assessments
,”
Eng. Fract. Mech.
0013-7944,
24
(
1
), pp.
65
76
.
28.
Konosu
,
S.
, 2006, “
Failure Assessment Curves (FACs) in Japanese FFS Code, HPIS Z101 Level 2
,”
Proceedings of ASME
, Paper No. PVP2006-ICOVT11-93498.
29.
Konosu
,
S.
, and
Mukaimachi
,
N.
, 2008, “
Plastic Collapse Assessment Procedure for Vessel With Local Thin Area Simultaneously Subjected to Internal Pressure and External Bending Moment
,”
ASME J. Pressure Vessel Technol.
0094-9930,
130
, p.
011207
.
30.
Folias
,
E. S.
, 1999, “
Failure Correlation Between Cylindrical Pressurized Vessels and Flat Plates
,”
Int. J. Pressure Vessels Piping
0308-0161,
76
, pp.
803
811
.
31.
2006, “
Assessment Standard for Externally Corroded Pressure Equipment
,” Ibaraki FFS Rule, Ibaraki Prefecture, in Japanese.
32.
Konosu
,
S.
,
Kano
,
M.
,
Mukaimachi
,
N.
, and
Komura
,
H.
, 2009, “
Plastic Collapse Load for Vessel With External Flaw Simultaneously Subjected to Internal Pressure and External Bending Moment-Experimental and FEA Results
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
, p.
021206
.
33.
Konosu
,
S.
, 2009, “
Assessment Procedure for Multiple Volumetric Flaws in p-M Diagram
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
, p.
025903
.
You do not currently have access to this content.