To understand the response of Alloy 617 to long-time exposure conditions and to determine the supplementary data needs for structural components in Gen IV nuclear reactors, literature of aging and aging effects in the alloy was reviewed. Most of the reviewed data were produced in connection with the international research effort supporting high temperature gas-cooled reactor projects in the 1970s and 1980s. Topics considered included microstructural changes, hardness, tensile properties, toughness, creep-rupture, fatigue, and crack growth. It became clear that, for the long-time very high-temperature conditions of the Gen IV reactors, a significant effort would be needed to fully understand and characterize property changes. Several topics for further research were recommended.

1.
Hosier
,
J. C.
, and
Tillack
,
D. J.
, 1972, “
Inconel Alloy 617—A New High Temperature Alloy
,”
Met. Eng. Q.
0026-0967,
12
, pp.
51
55
.
2.
Mankins
,
W. L.
,
Hosier
,
J. C.
, and
Bassford
,
T. H.
, 1974, “
Microstructure and Phase Stability of INCONEL Alloy 617
,”
Metall. Trans.
0026-086X,
5
, pp.
2579
2590
.
3.
Kimball
,
G. F.
,
Lai
,
G. Y.
, and
Reynolds
,
G. H.
, 1976, “
Effects of Thermal Aging on Microstructural and Mechanical Properties of a Commercial Ni-Cr-Co-Mo Alloy (Inconel 617)
,”
Metall. Trans. A
0360-2133,
7A
, pp.
1951
1952
.
4.
Hosoi
,
Y.
, and
Abe
,
S.
, 1975, “
The Effect of Helium Environment on Creep Rupture Properties of Inconel 617 at 1000°C
,”
Metall. Trans. A
0360-2133,
6A
, pp.
1171
1178
.
5.
Kitagawa
,
M.
,
Mino
,
K.
,
Hattori
,
H.
,
Ohtomo
,
A.
,
Fukagawa
,
M.
, and
Saiga
,
Y.
, 1976, “
Some Problems in Developing the High Temperature Design Code for a 1.5MWT Helium Heat Exchanger
,”
Elevated Temperature Design Symposium
,
American Society of Mechanical Engineers
,
New York, NY
, September 19–24, 1976, pp.
33
40
.
6.
von der Gracht
R.
,
Ennis
,
P. J.
,
Czryska-Filemonowicz
,
A.
,
Schuster
,
H.
, and
Nickel
,
H.
, 1986, “
The Creep Behavior of Ni-22Cr-9Mo-12Co-1Al in Carburizing and Decarburizing Environments
,”
The International Conference on Creep
,
Institute of Mechanical Engineers
,
London
, April 15–18, 1986, pp.
123
128
.
7.
Kihara
,
S.
,
Newkirk
,
J. B.
,
Ohtomo
,
A.
, and
Saiga
,
Y.
, 1980, “
Morphological Changes of Carbides During Creep and Their Effects on the Creep Properties of Inconel 617 at 1000°C
,”
Metall. Trans. A
0360-2133,
11A
, pp.
1019
1031
.
8.
1984, Nucl. Technol., 66 (entire volume). 0026-086X
9.
Kirchhofer
,
H.
,
Schubert
,
F.
, and
Nickel
,
H.
, 1984, “
Precipitation Behavior of Ni-Cr-22Fe-18Mo (HASTELLOY X) and Ni-Cr-2Co-12Mo (INCONEL 617) After Isothermal Aging
,”
Nucl. Technol.
,
66
, pp.
139
148
.
10.
Bruch
,
U.
,
Schumacher
,
D.
,
Ennis
,
P.
, and
Heesen
,
E.
, 1984, “
Tensile and Impact Properties of Candidate Alloys for High-Temperature Gas-Cooled Reactor Applications
,”
Nucl. Technol.
,
66
, pp.
357
362
.
11.
Schneider
,
K.
,
Hartnagel
,
W.
,
Schepp
,
P.
, and
Ilschner
,
B.
, 1984, “
Creep Behavior of Materials for High-Temperature Reactor Application
,”
Nucl. Technol.
,
66
, pp.
289
295
.
12.
Ennis
,
P. J.
,
Mohr
,
K. P.
, and
Schuster
,
H.
, 1984, “
Effect of Carburizing Service Environments on the Mechanical Properties of High-Temperature Alloys
,”
Nucl. Technol.
,
66
, pp.
363
368
.
13.
Strizak
,
J. P.
,
Brinkman
,
C. R.
,
Booker
,
M. K.
, and
Rittenhouse
,
P. L.
, 1982, “
The Influence of Temperature, Environment, and Thermal Aging on the Continuous Cycle Fatigue Behavior of Hastelloy X and Inconel 617
,”
Oak Ridge National Laboratory
, Report No. ORNL/TM-8130.
14.
McCoy
,
H. E.
, and
King
,
J. F.
, 1985, “
Mechanical Properties of Inconel 617 and 618
,”
Oak Ridge National Laboratory
, Report No. ORNL/TM-9337.
15.
McCoy
,
H. E.
, 1985, “
Mechanical Properties of Hastelloy X and Inconel 617 After Aging 53,000 Hours in HTGR-He
,”
Oak Ridge National Laboratory
, Report No. ORNL/TM-9604.
16.
McCoy
,
H. E.
, 1986, “
Evaluation of Advanced Alloys for Gas-Cooled Reactors
,”
Oak Ridge National Laboratory
, Report No. ORNL/TM-9891.
17.
Garud
,
Y. S.
, 1986, “
Development of a Physically Based Model for Material Strength and Embrittlement Under HTGR Operating Conditions
,”
S. Levy Incorporated, SBIR
, Report on Contract No. DE-AC03-85ER80219.
18.
Schubert
,
F.
,
Breitbach
,
G.
, and
Nickel
,
H.
, 1993, “
German Structural Design Rule KTA 3221 for Metallic HTR-Components
,”
High-Temperature Service and Time-Dependent Failure
,
ASME-International
,
New York
, PVP-Vol.
262
, pp.
9
18
.
19.
Schubert
,
F.
,
Nickel
,
H.
, and
Breitbach
,
G.
, 1991, “
Structural Design Criteria for HTR–A Summary Report
,”
Nucl. Eng. Des.
,
132
, pp.
75
84
. 0029-5493
20.
Corum
,
J. M.
, and
Blass
,
J. J.
, 1991, “
Rules for Design of Alloy 617 Nuclear Components to Very High Temperatures
,”
Fatigue, Fracture, and Risk
,
ASME-International
,
New York
, PVP-Vol.
215
, pp.
147
153
.
21.
Srivastava
,
S. K.
, and
Klarstrom
,
D. L.
, 1990, “
The LCF Behavior of Several Solid Solution Strengthened Alloys Used for Gas Turbine Engines
,”
The Gas Turbine and Aeroengine Congress and Exposition
,
Brussels, Belgium
, Jun. 11–14, Paper No. 90-GT-80.
22.
Lai
,
G. Y.
, 1993, “
Nitridation of Several Combustor Alloys in a Simulated Gas Turbine Combustion Environment
,”
Proceedings of the ASM 1993 Materials Congress Materials Week ’93
,
Pittsburgh, PA
, Oct. 17–21, pp.
113
121
.
23.
Meyer-Olbersleben
,
F.
,
Kasik
,
N.
,
Ilschner
,
B.
, and
Rezai-Aria
,
F.
, 1999, “
The Thermal Fatigue Behavior of Combustor Alloys IN 617 and HAYNES 230 Before and After Welding
,”
Metall. Mater. Trans. A
1073-5623,
30A
, pp.
981
989
.
24.
Coade
,
R.
, and
Tunjic
,
M.
, 2002, “
Failure of an Inconel 617 Gas Turbine Liner
,”
Proceedings of the Seventh Conference on Operating Pressure Equipment
,
Institute of Materials Engineering Ltd.
,
Melbourne, Victoria
, April 2–4, 2003, Vol.
7
.
25.
Viswanathan
,
R.
,
Purgert
,
R.
, and
Rao
,
U.
, 2002, “
Materials for Ultra-Supercritical Coal-Fired Power Plant Boilers
,”
Materials for Advanced Power Engineering 2002
,
Forschungszentrum Julich GmbH
, September 2002, pp.
1109
1129
.
26.
Swindeman
,
R. W.
,
Shingledecker
,
J. P.
,
Klueh
,
R. L.
,
Wright
,
I. G.
, and
Maziasz
,
P. J.
, 2004, “
Boiler Materials for Ultra Supercritical Coal Power Plants Task 2: An Assessment of Candidate Materials–A Review of Literature Part I: Overview and Recommendations
,”
National Energy Technology Laboratory
, Report No. NETL/DOE, USC T-7.
27.
Starr
,
F.
, and
Shibli
,
I. A.
, 2000, “
Fundamental Issues in the Development of Austenitic and Nickel Based Alloys for Advanced Supercritical Steam and High Temperature Indirect Fired Gas Turbine Systems
,”
Parsons Advanced Materials for 21st Century Turbines and Power Plant
,
IOM Communications
,
London
, pp.
459
471
.
28.
Allen
,
D.
,
Keustermans
,
J.-P.
,
Gijbels
,
S.
, and
Bicego
,
V.
, 2004, “
Creep Rupture and Ductility of As-Manufactured and Service-Aged Nickel Alloy IN617 Materials and Welds
,”
Mater. High. Temp.
0960-3409,
21
(
1
), pp.
55
60
.
29.
Schubert
,
F.
,
Penkalla
,
H. J.
, and
Rosler
,
J.
, 2005, “
Wrought Ni-Base Alloys for Rotor Shafts in Advanced USC Power Plants
,”
Advances in Materials Technology for Fossil Power Plants
,
ASM International
,
Materials Park, OH
, October 2004, pp.
587
601
, EPRI Report No. 1011381.
30.
Wu
,
Q.
, and
Vasudevan
,
V. K.
, 2004, “
Characterization of Boiler Materials for Ultracritical Coal Power Plants
,” Annual Progress Report for Period August 1, 2002 to July 30, 2003 Under UT-Battelle Sub Contract No. 4000017043.
31.
Shingledecker
,
J. P.
,
Swindeman
,
R. W.
, and
Vasudevan
,
V. K.
, 2004, “
Creep Strength of High Temperature Alloys for Ultrasupercritical Steam Boilers
,”
Fourth International Conferences on Advances in Materials Technology for Fossil Power Plants, Hilton Oceanfront Resort
,
Hilton Head Island, SC
, Oct. 25–28.
32.
Anon., 1979, Inconel Alloy 617, Huntington Alloys Inc., Huntington, WV.
33.
Natesan
,
K.
,
Purohit
,
A.
, and
Tam
,
S. W.
, 2003, “
Materials Behavior in HTGR Environments
,”
Argonne National Laboratory
, Report No. NUREG/CR-6824(ANL-02/37).
34.
Shah
,
V. N.
,
Majumdar
,
S.
, and
Natesan
,
K.
, 2003, “
Review and Assessment of Codes and Procedures for HTGR Components
,”
Argonne National Laboratory
, Report No. NUREG/CR-6816 (ANL-02/36).
35.
Santella
,
M. L.
, and
Swindeman
,
R. W.
, 2005, private communication.
36.
Dyson
,
B.
, 2000, “
The Use of CDM in Materials Modeling and Component Creep Life Prediction
,”
J. Pressure Vessel Technol.
0094-9930,
122
(
3
), pp.
281
296
.
37.
Estrin
,
Y.
, 1991, “
A Versatile Unified Constitutive Model Based on Dislocation Density Evolution
,”
High Temperature Constitutive Modelling-Theory and Application
,
American Society of Mechanical Engineers
,
New York
, MD-Vol.
26
, pp.
65
83
.
You do not currently have access to this content.