The present paper provides experimental J estimation equation based on the load-crack opening displacement (COD) record for testing the circumferential through-wall cracked pipe under combined tension and bending. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic η-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks (small crack angle), whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.

1.
Rice
,
J. R.
,
Paris
,
P. C.
, and
Merkle
,
J. G.
, 1973, “
Some Further Results of J-Integral Analysis and Estimates
,” Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, American Society of Testing and Materials, Philadelphia, pp.
231
245
.
2.
Paris
,
P. C.
,
Ernst
,
H.
, and
Turner
,
C. E.
, 1980, “
A J-integral Approach to the Development of η-factors
,”
Fracture Mechanics: 12th Conference
, ASTM STP 700,
American Society of Testing and Materials
,
Philadelphia
, pp.
338
351
.
3.
Anderson
,
T. L.
, 1995,
Fracture Mechanics: Fundamentals and Applications
,
CRC
,
Boca Raton, FL
.
4.
Kim
,
Y. J.
, and
Budden
,
P. J.
, 2001, “
Plastic η-factor Solutions of Homogeneous and Bi-Material SE(T) Specimens for Toughness and Creep Crack Growth Testing
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
, pp.
751
760
.
5.
Kim
,
Y. J.
, and
Schwalbe
,
K. H.
, 2001, “
On Experimental J Estimation Equations Based on CMOD for SE(B) Specimens
,”
J. Test. Eval.
0090-3973,
29
, pp.
67
71
.
6.
ASTM
, 2006, “
Standard Test Method for Measurement of Fracture Toughness
,” ASTM Standard, E1820-06.
7.
British Standards Institution
, 1991, “
Fracture Mechanics Toughness Tests
,” British Standard BS 7448-1991.
8.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1991, “
Family of Crack-Tip Fields Characterised by a Triaxiality Parameter
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
898
1015
.
9.
Hancock
,
J. W.
,
Reuter
,
W. G.
, and
Parks
,
D. M.
, 1993, “
Constraint and Toughness Parameterised by T
,”
Constraint Effect in Fracture
,
E. M.
Hackett
,
K. H.
Schwalbe
, and
R. H.
Dodds
, eds.,
American Society for Testing and Materials
,
Philadelphia
, ASTM STP 1171, pp.
21
40
.
10.
Roos
,
E.
,
Eisele
,
U.
, and
Silcher
,
H.
, 1993, “
Effect of Stress State on the Ductile Fracture Behaviour of Large-Scale Specimens
,”
Constraint Effect in Fracture
,
E. M.
Hackett
,
K. H.
Schwalbe
, and
R. H.
Dodds
, eds.,
American Society for Testing and Materials
,
Philadelphia
, ASTM STP 1171, pp.
41
63
.
11.
Yang
,
S.
,
Chao
,
Y. J.
, and
Sutton
,
M. A.
, 1993, “
Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material
,”
Eng. Fract. Mech.
0013-7944,
45
, pp.
1
20
.
12.
Kirk
,
M. T.
, and
Dodds
,
R. H.
, Jr.
, 1993, “
J and CTOD Estimation Equations for Shallow Cracks in Single Edge Notch Bend Specimens
,”
J. Test. Eval.
0090-3973,
21
, pp.
228
238
.
13.
Wang
,
Y. Y.
, and
Gordon
,
J. R.
, 1992, “
The Limits of Applicability of J and CTOD Estimation Procedures for Shallow-Cracked SENB Specimens
,”
Shallow Crack Fracture Mechanics, Toughness Test and Applications
,
M. G.
Dawes
, ed.,
The Welding Institute
, Abington,
Cambridge, UK
.
14.
Kim
,
Y. J.
,
Kim
,
J. S.
,
Cho
,
S. M.
, and
Kim
,
Y. J.
, 2004, “
3-D Constraint Effects on J Testing and Crack Tip Constraint in M(T), SE(B), SE(T) and C(T) Specimens: Numerical Study
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1203
1218
.
15.
USNRC
, 1984, “
Evaluation of Potential for Pipe Break
,” NUREG-1061, Vol.
3
.
16.
Wilkowski
,
G. M.
,
Zahoor
,
A.
, and
Kanninen
,
M. F.
, 1981, “
A Plastic Fracture Mechanics Prediction of Fracture Instability in a Circumferentially Cracked Pipe in Bending—Part II. Experimental Verification on a Type 304 Stainless Steel Pipe
,”
ASME J. Pressure Vessel Technol.
0094-9930,
103
, pp.
359
365
.
17.
Moulin
,
D.
, and
Le Delliou
,
P.
, 1996, “
French Experimental Studies of Circumferentially Through-Wall Cracked Austenitic Pipes under Static Bending
,”
Int. J. Pressure Vessels Piping
0308-0161,
65
, pp.
343
352
.
18.
Miura
,
N.
, and
Wilkowski
,
G. M.
, 1998, “
J-R Curves from Circumferentially Throughwall Cracked Pipe Tests Subjected to Combined Bending and Tension—Part II. Experimental and Analytical Validation
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
412
417
.
19.
Zahoor
,
A.
, and
Kanninen
,
M. F.
, 1981, “
A Plastic Fracture Mechanics Prediction of Fracture Instability in a Circumferentially Cracked Pipes in Bending—Part I. J-Integral Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
103
, pp.
352
358
.
20.
Chattopadhyay
,
J.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
, 2001, “
Derivation of γ Parameter from Limit Load Expression of Cracked Component to Evaluate J-R Curve
,”
Int. J. Pressure Vessels Piping
0308-0161,
78
, pp.
401
427
.
21.
Roos
,
E.
,
Eisele
,
U.
, and
Silcher
,
H.
, 1986, “
A Procedure for the Experimental Assessment of the J-Integral by Means of Specimens of Different Geometries
,”
Int. J. Pressure Vessels Piping
0308-0161,
23
, pp.
81
93
.
22.
ABAQUS Ver. 6.4 User’s Manual
, 2004, ABAQUS, Inc.
23.
Yang
,
J. S.
,
Kim
,
B. N.
,
Park
,
C. Y.
,
Park
,
Y. S.
, and
Yoon
,
K. S.
, 1999, “
A Simple Method for Estimating Effective J-integral in LBB Application to Nuclear Power Plant Piping System
,”
Transactions of 15th International Conference Structural Mechanics Reactor Technology
, Vol.
V
, pp.
327
334
.
24.
Kumar
,
V.
, and
German
,
M. D.
, 1988, “
Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders
,” EPRI NP-5596.
You do not currently have access to this content.