Limit loads for mechanical components and structures are determined in this paper by invoking the concept of equivalence of “static indeterminacy,” which relates a multidimensional pressure component configuration to a “reference two-bar structure.” Simple scaling relationships are developed that enable the rapid determination of limit loads. The reference two-bar structure method is applied to a number of pressure component configurations with or without notches.
Issue Section:
Research Papers
1.
ASME
, 2001, ASME Boiler and Pressure Vessel Code
, ASME
, New York
, Section III.2.
ASME
, 2001, ASME Boiler and Pressure Vessel Code
, ASME
, New York
Section VIII.3.
Webster
, G.
, and Ainsworth
, R. A.
, 1994, High Temperature Component Life Assessment
, Chapman and Hall
, London
.4.
Ainsworth
, R. A.
, Dean
, D. W.
, and Budden
, P. J.
, 2000, “Development in Creep Fracture Assessments Within the R5 Procedure
,” IUTAM Symposium on Creep in Structures
, Nagoya
, Japan, pp. 321
–330
.5.
BSI
, 1994, Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Design in Component Operating at High Temperature
, BSI
, London
, PD 6539:1994.6.
Seshadri
, R.
, 1991, “The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications
,” ASME J. Pressure Vessel Technol.
0094-9930, 113
, pp. 219
–227
.7.
Adibi-Asl
, R.
, Fanous
, I. F. Z.
, and Seshadri
, R.
, 2006, “Elastic Modulus Adjustment Procedures—Improved Convergence Schemes
,” Int. J. Pressure Vessels Piping
0308-0161, 83
, pp. 154
–160
.8.
Ponter
, A. R. S.
, Fuschi
, P.
, and Engelhardt
, M.
, 2000, “Limit Analysis for a General Class of Yield Conditions
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 401
–421
.9.
Ponter
, A. R. S.
, and Engelhardt
, M.
, 2000, “Shakedown Limit for a General Yield Condition
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 423
–445
.10.
Ponter
, A. R. S.
, and Chen
, H.
, 2001, “A Programming Method for Limit Load and Shakedown Analysis of Structures
,” Proceedings of the ASME Pressure Vessels and Piping Conference
, Atlanta, GA, ASME
, New York
, ASME PVP-Vol. 430
, pp. 155
–160
.11.
Seshadri
, R.
, and Fernando
, C. P. D.
, 1992, “Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,” ASME J. Pressure Vessel Technol.
0094-9930, 114
, pp. 201
–208
.12.
Marriott
, D. L.
, 1988, “Evaluation of Deformation or Load Control of Stress Under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,” Proceedings of the ASME Pressure Vessels and Piping Conference
, Pittsburgh, PA, ASME
, New York
, ASME PVP-Vol. 136
, pp. 3
–9
.13.
Mackenzie
, D.
, and Boyle
, J. T.
, 1993, “A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,” Int. J. Pressure Vessels Piping
0308-0161, 53
, pp. 77
–85
.14.
Seshadri
, R.
, and Mangalaramanan
, S. P.
, 1997, “Lower Bound Limit Load Using Variational Concepts: The mα-Method
,” Int. J. Pressure Vessels Piping
0308-0161, 71
, pp. 93
–106
.15.
Calladine
, C. R.
, 1969, Engineering Plasticity
, Pergamon Press
, London
.16.
Lubliner
, J.
, 1990, Plasticity Theory
, Macmillan
, London
.17.
Mura
, T.
, Rimawi
, W. H.
, and Lee
, S. L.
, 1965, “Extended Theorems of Limit Analysis
,” Q. Appl. Math.
0033-569X, 23
, pp. 171
–179
.18.
Reinhardt
, W. D.
, and Seshadri
, R.
, 2003, “Limit Load Bounds for the mα Multipliers
,” ASME J. Pressure Vessel Technol.
0094-9930, 125
, pp. 11
–18
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.