Limit loads for mechanical components and structures are determined in this paper by invoking the concept of equivalence of “static indeterminacy,” which relates a multidimensional pressure component configuration to a “reference two-bar structure.” Simple scaling relationships are developed that enable the rapid determination of limit loads. The reference two-bar structure method is applied to a number of pressure component configurations with or without notches.

1.
ASME
, 2001,
ASME Boiler and Pressure Vessel Code
,
ASME
,
New York
, Section III.
2.
ASME
, 2001,
ASME Boiler and Pressure Vessel Code
,
ASME
,
New York
Section VIII.
3.
Webster
,
G.
, and
Ainsworth
,
R. A.
, 1994,
High Temperature Component Life Assessment
,
Chapman and Hall
,
London
.
4.
Ainsworth
,
R. A.
,
Dean
,
D. W.
, and
Budden
,
P. J.
, 2000, “
Development in Creep Fracture Assessments Within the R5 Procedure
,”
IUTAM Symposium on Creep in Structures
,
Nagoya
, Japan, pp.
321
330
.
5.
BSI
, 1994,
Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Design in Component Operating at High Temperature
,
BSI
,
London
, PD 6539:1994.
6.
Seshadri
,
R.
, 1991, “
The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
219
227
.
7.
Adibi-Asl
,
R.
,
Fanous
,
I. F. Z.
, and
Seshadri
,
R.
, 2006, “
Elastic Modulus Adjustment Procedures—Improved Convergence Schemes
,”
Int. J. Pressure Vessels Piping
0308-0161,
83
, pp.
154
160
.
8.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
, 2000, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
401
421
.
9.
Ponter
,
A. R. S.
, and
Engelhardt
,
M.
, 2000, “
Shakedown Limit for a General Yield Condition
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
423
445
.
10.
Ponter
,
A. R. S.
, and
Chen
,
H.
, 2001, “
A Programming Method for Limit Load and Shakedown Analysis of Structures
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
, Atlanta, GA,
ASME
,
New York
, ASME PVP-Vol.
430
, pp.
155
160
.
11.
Seshadri
,
R.
, and
Fernando
,
C. P. D.
, 1992, “
Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,”
ASME J. Pressure Vessel Technol.
0094-9930,
114
, pp.
201
208
.
12.
Marriott
,
D. L.
, 1988, “
Evaluation of Deformation or Load Control of Stress Under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
, Pittsburgh, PA,
ASME
,
New York
, ASME PVP-Vol.
136
, pp.
3
9
.
13.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,”
Int. J. Pressure Vessels Piping
0308-0161,
53
, pp.
77
85
.
14.
Seshadri
,
R.
, and
Mangalaramanan
,
S. P.
, 1997, “
Lower Bound Limit Load Using Variational Concepts: The mα-Method
,”
Int. J. Pressure Vessels Piping
0308-0161,
71
, pp.
93
106
.
15.
Calladine
,
C. R.
, 1969,
Engineering Plasticity
,
Pergamon Press
,
London
.
16.
Lubliner
,
J.
, 1990,
Plasticity Theory
,
Macmillan
,
London
.
17.
Mura
,
T.
,
Rimawi
,
W. H.
, and
Lee
,
S. L.
, 1965, “
Extended Theorems of Limit Analysis
,”
Q. Appl. Math.
0033-569X,
23
, pp.
171
179
.
18.
Reinhardt
,
W. D.
, and
Seshadri
,
R.
, 2003, “
Limit Load Bounds for the mα Multipliers
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
11
18
.
You do not currently have access to this content.