The paper investigates the response of elbows under in-plane bending and pressure, through nonlinear finite element tools, supported by experimental results from real-scale tests. The finite element analysis is mainly based on a nonlinear three-node “tube element,” capable of describing elbow deformation in a rigorous manner, considering geometric and material nonlinearities. Furthermore, a nonlinear shell element from a general-purpose finite element program is employed in some special cases. Numerical results are compared with experimental data from steel elbow specimens. The comparison allows the investigation of important issues regarding deformation and ultimate capacity of elbows, with emphasis on relatively thin-walled elbows. The results demonstrate the effects of pressure and the influence of straight pipe segments. Finally, using the numerical tools, failure of elbows under bending moments is examined (cross-sectional flattening or local buckling), and reference to experimental observations is made.

1.
Karman, Th. von, 1911, “Uber die Formuanderung dunnwandiger Rohre” (in German), Zeit. Des Vereines deutcher Ingenieure, 55, pp. 1889–1895.
2.
Pardue
,
T. E.
, and
Vigness
,
J.
,
1951
, “
Properties of Thin-Walled Curved Tubes of Short-Bend Radius
,”
Trans. ASME
,
73
, pp.
77
87
.
3.
Gross
,
N.
,
1952
, “
Experiments on Short-radius Pipe-bends
,”
Proceedings of the Institution of Mechanical Engineers (B)
,
1B
, pp.
465
479
.
4.
Gross
,
N.
, and
Ford
,
H.
,
1952
, “
The Flexibility of Short-radius Pipe-bends
,”
Proceedings of the Institution of Mechanical Engineers (B)
,
1B
, pp.
480
491
.
5.
Rodabaugh
,
E. C.
, and
George
,
H. H.
,
1957
, “
Effect of Internal Pressure on the Flexibility and Stress Intensification Factors of Curved Pipe or Welding Elbows
,”
Trans. ASME
,
79
, pp.
939
948
.
6.
American Society of Mechanical Engineers, 1993, Chemical Plant and Petroleum Refinery Piping, ASME 31.3, 1993 Edition, ASME, New York, NY.
7.
Marcal
,
P. V.
,
1967
, “
Elastic-Plastic Behavior of Pipe Bends With In-plane Bending
,”
J. Strain Anal.
,
2
(
1
), pp.
84
90
.
8.
Sobel
,
L. H.
,
1977
, “
In-Plane Bending of Elbow
,”
Comput. Struct.
,
7
, pp.
701
715
.
9.
Ohstubo
,
H.
, and
Watanabe
,
O.
,
1978
, “
Stress Analysis of Pipe Bends by Ring Elements
,”
ASME J. Pressure Vessel Technol.
,
100
, pp.
112
122
.
10.
Bathe
,
K.-J.
, and
Almeida
,
C. A.
,
1980
, “
A Simple and Effective Pipe Elbow Element
,”
ASME J. Appl. Mech.
,
47
, pp.
93
100
.
11.
Millittelo
,
C.
, and
Huespe
,
A. E.
,
1988
, “
A Displacement-Based Pipe Elbow Element
,”
Comput. Struct.
,
29
(
2
), pp.
339
343
.
12.
Yan
,
A. M.
,
Jospin
,
R. J.
, and
Nguyen
,
D. H.
,
1999
, “
An Enhanced Pipe Elbow Element—Application in Plastic Limit Analysis of Pipe Structures
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
409
431
.
13.
Hibbit, H. D., Karlsson, B. I., and Sorensen, 2001, Theory Manual, ABAQUS, version 6.2, Pawtucket, RI, USA.
14.
Sobel
,
L. H.
, and
Newman
,
S. Z.
,
1980
, “
Comparison of Experimental and Simplified Analytical Results for the In-Plane Plastic Bending and Buckling of an Elbow
,”
ASME J. Pressure Vessel Technol.
,
102
, pp.
400
409
.
15.
Sobel
,
L. H.
, and
Newman
,
S. Z.
,
1986
, “
Simplified, Detailed and Isochronous Analysis and Test Results for the In-Plane Elastic-Plastic and Creep Behavior of an Elbow
,”
ASME J. Pressure Vessel Technol.
,
108
, pp.
297
304
.
16.
Dhalla
,
A. K.
,
1987
, “
Collapse Characteristics of a Thin-Walled Elbow
,”
ASME J. Pressure Vessel Technol.
,
109
, pp.
394
401
.
17.
Gresnigt, A. M., et al., 1985, “Preofresultaten van Proeven op Gladde Bochten en Vergelijking Daarvan met de in OPL 85-333 Gegeven Rekenregels,” [in Dutch], Institute for Construction Materials and Structures, TNO-IBBC, Report OPL 85-334, Delft, The Netherlands.
18.
Hilsenkopf
,
P.
,
Boneh
,
B.
, and
Sollogoub
,
P.
,
1988
, “
Experimental Study of Behavior and Functional Capability of Ferritic Steel Elbows and Austenitic Stainless Steel Thin-Walled Elbows
,”
Int. J. Pressure Vessels Piping
,
33
, pp.
111
128
.
19.
Suzuki
,
N.
, and
Nasu
,
M.
,
1989
, “
Non-Linear Analysis of Welded Elbows Subjected to In-Plane bending
,”
Comput. Struct.
,
32
(
3/4
), pp.
871
881
.
20.
Tan, Y., Matzen, V. C., and Yu, L., 2000, “Correlation of Test and FEA Results for the Nonlinear Behavior of Elbows,” Pressure Vessels and Piping Codes and Standards, PVP-Vol. 407, ASME, New York, pp. 307–314.
21.
Gresnigt
,
A. M.
, and
Gresnigt
,
A. M.
,
1995
, “
Strength and Deformation Capacity of Bends in Pipelines
,”
Int. J. Offshore Polar Eng.
,
5
(
4
), pp.
294
307
.
22.
Gresnigt
,
A. M.
,
1986
, “
Plastic Design of Buried Steel Pipelines in Settlement Areas
,”
Heron
,
31
(
4
),
Delft, The Netherlands
Delft, The Netherlands
.
23.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1998
, “
Limit Loads for Pipe Elbows with Internal Pressure Under In-plane Closing Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
120
, pp.
35
42
.
24.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1999
, “
Effect of Internal Pressure on Elastic-Plastic Behavior of Pipe Elbows Under In-Plane Opening Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
121
, pp.
400
405
.
25.
Chattopadhyay
,
J.
,
Nathani
,
D. K.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2000
, “
Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
122
, pp.
431
436
.
26.
Karamanos
,
S. A.
, and
Tassoulas
,
J. L.
,
1996
, “
Tubular Members I: Stability Analysis and Preliminary Results
,”
J. Eng. Mech.
,
122
(
1
), pp.
64
71
.
27.
Karamanos
,
S. A.
, and
Tassoulas
,
J. L.
,
1996
, “
Tubular Members II: Local Buckling and Experimental Verification
,”
J. Eng. Mech.
,
122
(
1
), pp.
72
78
.
28.
Brush, D. O., and Almroth, B. O., 1975. Buckling of Bars, Plates, and Shells, McGraw-Hill.
29.
Giakoumatos, E., 2002, “Nonlinear Finite Element Analysis of Pipes and Elbows Under Pressure and Bending,” M.Sc. diploma thesis, Dept. of Mechanical and Industrial Engineering, University of Thessaly, Volos, Greece.
30.
Karamanos
,
S. A.
,
2002
, “
Bending Instabilities of Elastic Tubes
,”
Int. J. Solids Struct.
,
39
(
8
), pp.
2059
2085
.
31.
Seide
,
P.
, and
Weingarten
,
V. I.
,
1961
, “
On the Buckling of Circular Cylindrical Shells Under Pure Bending
,”
ASME J. Appl. Mech.
,
28
, pp.
112
116
.
32.
Aksel’rad (Axelrad), E. L., 1965. “Refinement of Buckling-Load Analysis for Tube Flexure by Way of Considering Precritical Deformation,” (in Russian), Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk, Mekhanika i Mashinostroenie, 4, pp. 133–139.
33.
Donnell
,
L. H.
, and
Wan
,
C. C.
,
1950
, “
Effects of Imperfections on Buckling of Thin Cylinders and Columns Under Axial Compression
,”
ASME J. Appl. Mech.
,
17
, pp.
73
80
.
34.
Gerard, G., 1956, “Compressive and Torsional Buckling of Thin-Walled Cylinders in Yield Region,” Technical Note 3726, NACA Washington, D.C., USA.
You do not currently have access to this content.