Abstract

The subsea valve system is a key part of the subsea control system (SCS), which maintains the reliability of the subsea production system (SPS). With its current state, subsea valve systems cannot cope with the requirements to transition to the all-electric system (AES) and application of the SPS to deep- and ultra-deep-water locations. The primary reason is related to the limitations of the currently used coating material of subsea valve internals, tungsten carbide (WC), in terms of high operating pressures, sand production, and efficiency. With its expected low friction and high wear resistance, polycrystalline diamond compact (PDC) material is offered to replace WC as a top contact material in subsea valves. For this objective, PDC material's friction and wear behavior are investigated experimentally. The experimental section of the research involves tests with a reciprocating pin-on-flat tribometer, surface roughness measurements, and microscopical analysis of wear. Alongside PDC material, WC material is exposed to the same test process and conditions throughout the research for comparative analysis. The results show that comparing WC material in dry conditions, PDC material offers 61% friction reduction and 99.5% wear reduction; in lubricated conditions, it offers 40% friction reduction and 58% wear reduction. The findings highlight the potential impacts of this study on minimizing power usage for hydraulic and electric subsea actuators which consequently contributes to the reliability of the SCS and fills the existing research gap.

References

1.
Bai
,
Y.
, and
Bai
,
Q.
,
2012
,
Subsea Engineering Handbook
,
Elsevier
,
Oxford
.
2.
Kershenbaum
,
V. Y.
,
Shmal
,
G. I.
, and
Panteleev
,
A. S.
,
2018
, “
The Main Directions of Standardization in the Field of Subsea Production Systems
,”
Neft. Khoz. Oil Ind.
,
2018
(
2
), pp.
102
104
.
3.
Sotoodeh
,
K.
,
2021
,
Subsea Valves and Actuators for the Oil and Gas Industry
,
Gulf Professional Publishing
,
Cambridge, MA
.
4.
Cattanach
,
J. M.
, and
Scott
,
R. D.
, 1984, “
Design Considerations of a Subsea Control System for a Floating Production System
,”
Offshore Technology Conference
,
Houston, TX
,
May 7–9
.
5.
Wang
,
H.
,
Jia
,
P.
,
Wang
,
L.
,
Yun
,
F.
,
Wang
,
G.
,
Zhang
,
A.
,
Xu
,
M.
, and
Wang
,
X.
,
2020
, “
Design and Performance Analysis for the Low-Power Holding Mechanism of the All-Electric Subsea Gate Valve Actuator
,”
Appl. Sci.
,
10
(
17
), p.
6119
.
6.
Gao
,
C.
,
Cai
,
B.
,
Sheng
,
C.
,
Zhang
,
Y.
,
Liu
,
Z.
,
Ji
,
R.
, and
Liu
,
Y.
,
2021
, “
Design and Development of All-Electric Surface-Controlled Subsurface Safety Valve System
,”
SPE J.
,
26
(
05
), pp.
2948
2962
.
7.
Johansen
,
C.
,
Rokne
,
Ø
,
Moe
,
S.
,
Magnus
,
H.
, and
Monsson
,
O.
, 2017, “
Real Application of Electric Controls Technology to Subsea Systems: Success, Learnings and Recommendations
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 1–4
.
8.
Yu
,
J.
, and
Zhao
,
H. L.
,
2012
, “
All-Electric Subsea Production Control System
,”
Appl. Mech. Mater.
,
251
, pp.
196
200
.
9.
Sotoodeh
,
K.
,
2020
, “
All-Electric Subsea Control Systems and the Effects on Subsea Manifold Valves
,”
J. Mar. Sci. Appl.
,
19
(
3
), pp.
465
472
.
10.
Mackenzie
,
R.
,
Gerardin
,
P.
, and
Van Den Akker
,
J.
, 2009, “
The First All Electric Subsea System on Stream: Development, Operational Feedback and Benefits for Future Applications
,”
SPE Offshore Europe Conference and Exhibition
,
Aberdeen, UK
,
Sept. 8
.
11.
Ragazzoni
,
S.
,
Campanelli
,
G.
,
Pozzati
,
R.
,
Ambrosini
,
I.
, and
Gjedrem
,
T.
, 2012, “
Very Large Size Valves and Actuators – Design and Testing
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference
,
Rhodes, Greece
,
June 17–22
, p. ISOPE-I-12-242.
12.
Bruschi
,
R.
,
Marchionni
,
L.
,
Mancini
,
A.
,
Vitali
,
L.
, and
Pazzaglia
,
J.
, 2016, “
Controlling Fatigue Damage in Deep-Water Installation
,”
Proceedings of the 26th International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 26
.
13.
Malik
,
J.
,
Toor
,
I. H.
,
Ahmed
,
W. H.
,
Gasem
,
Z. M.
,
Habib
,
M. A.
,
Ben-Mansour
,
R.
, and
Badr
,
H. M.
,
2014
, “
Evaluating the Effect of Hardness on Erosion Characteristics of Aluminum and Steels
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
2274
2282
.
14.
Lu
,
B. T.
, and
Luo
,
J. L.
,
2015
, “
Correlation Between Surface-Hardness Degradation and Erosion Resistance of Carbon Steel – Effects of Slurry Chemistry
,”
Tribol. Int.
,
83
, pp.
146
155
.
15.
Zhong
,
L.
,
Li
,
Z.
,
Wang
,
G.
,
He
,
H.
,
Wei
,
G.
,
Zheng
,
S.
,
Feng
,
G.
,
Xie
,
N.
, and
Zhang
,
R.
,
2022
, “
Erosion Resistance of Valve Core Surface Combined With WC-10Co-4Cr Coating Process Under Different Pretreatments
,”
Materials
,
15
(
22
), p.
8140
.
16.
Ahmadli
,
M.
,
Gjersvik
,
T. B.
, and
Sangesland
,
S.
, 2023, “
Design Assessment and Optimization of a Barrier Valve for Subsea Applications
,”
Proceedings of the ASME 2023 42nd International Conference on Ocean
,
Melbourne, Australia
,
June 11–16
.
17.
Ahmadli
,
M.
,
Gjersvik
,
T. B. S.
,
Sangesland
,
S.
, and
Reynes
,
C.
, 2024, “
Enhancing Subsea Ball Valve Performance: A Material and Design Approach
,”
Proceedings of the ASME 2024 43rd International Conference on Ocean
,
Singapore
,
June 9–14
, p. V008T11A044.
18.
Donnet
,
C.
, and
Erdemir
,
A.
,
2008
,
Tribology of Diamond-Like Carbon Films: Fundamentals and Applications
,
Springer-Verlag
,
New York
.
19.
Bhushan
,
B.
,
2001
,
Modern Tribology Handbook: Vol. 1: Principles of Tribology
,
CRC Press
,
Boca Raton, FL
.
20.
Zapata Tamayo
,
J. G.
,
Björling
,
M.
,
Shi
,
Y.
,
Hardell
,
J.
, and
Larsson
,
R.
,
2024
, “
Micropitting Performance and Friction Behaviour of DLC Coated Bearing Steel Surfaces: On the Influence of Glycerol-Based Lubricants
,”
Tribol. Int.
,
196
, p.
109674
.
21.
Bueno
,
A. H. S.
,
Solis
,
J.
,
Zhao
,
H.
,
Wang
,
C.
,
Simões
,
T. A.
,
Bryant
,
M.
, and
Neville
,
A.
,
2018
, “
Tribocorrosion Evaluation of Hydrogenated and Silicon DLC Coatings on Carbon Steel for Use in Valves, Pistons and Pumps in Oil and Gas Industry
,”
Wear
,
394–395
, pp.
60
70
.
22.
Ramos
,
B. B.
,
Vicente
,
F. A.
,
Hammes
,
G.
,
Bendo
,
T.
, and
Binder
,
C.
,
2024
, “
Enhancing Corrosion and Tribology Performance of Stainless Steel With DLC Coatings: Effects of Doping and Multilayered Structures
,”
Surf. Coat. Technol.
,
477
, p.
130334
.
23.
Khan
,
S. A.
,
Ferreira
,
F.
,
Oliveira
,
J.
,
Emami
,
N.
, and
Ramalho
,
A.
,
2024
, “
A Comparative Study in the Tribological Behaviour of Different DLC Coatings Sliding Against Titanium Alloys
,”
Wear
,
554–555
, p.
205468
.
24.
Haldorsen
,
H. D.
, and
Twist
,
D.
,
2017
, “DLC-Coated Gate Valve in Petroleum Production or Water Injection,” U.S. Patent, ed., Aker Subsea AS.
25.
Bhowmick
,
S.
,
Sen
,
F. G.
,
Banerji
,
A.
, and
Alpas
,
A. T.
,
2015
, “
Friction and Adhesion of Fluorine Containing Hydrophobic Hydrogenated Diamond-Like Carbon (F-H-DLC) Coating Against Magnesium Alloy AZ91
,”
Surf. Coat. Technol.
,
267
, pp.
21
31
.
26.
Sharifahmadian
,
O.
,
Pakseresht
,
A.
,
Amirtharaj Mosas
,
K. K.
, and
Galusek
,
D.
,
2023
, “
Doping Effects on the Tribological Performance of Diamond-Like Carbon Coatings: A Review
,”
J. Mater. Res. Technol.
,
27
, pp.
7748
7765
.
27.
Bochechka
,
O. O.
,
2018
, “
Production of Polycrystalline Materials by Sintering of Nanodispersed Diamond Nanopowders at High Pressure. Review
,”
J. Superhard Mater.
,
40
(
5
), pp.
325
334
.
28.
Miyazaki
,
K.
,
Ohno
,
T.
,
Karasawa
,
H.
,
Takakura
,
S.
, and
Eko
,
A.
,
2016
, “
Performance Evaluation of Polycrystalline Diamond Compact Percussion Bits Through Laboratory Drilling Tests
,”
Int. J. Rock Mech. Min. Sci.
,
87
, pp.
1
7
.
29.
Ni
,
P.
,
Chen
,
Y.
,
Yang
,
W.
,
Hu
,
Z.
, and
Deng
,
X.
,
2023
, “
Research on Microstructure, Synthesis Mechanisms, and Residual Stress Evolution of Polycrystalline Diamond Compacts
,”
Crystals
,
13
(
8
), p.
1286
.
30.
Kanyanta
,
V.
,
2016
,
Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials
,
Springer
,
Cham
.
31.
Chen
,
J.
,
Gou
,
R.
,
Luo
,
X.
,
Li
,
K.
,
Zhang
,
J.
, and
Long
,
S.
,
2023
, “
Friction Behavior of Polycrystalline Diamond Compact and the Evolution of the Friction Film Under Different Matching Materials
,”
Int. J. Refract. Met. Hard Mater.
,
115
, p.
106313
.
32.
Sexton
,
T. N.
, and
Cooley
,
C. H.
,
2009
, “
Polycrystalline Diamond Thrust Bearings for Down-Hole Oil and Gas Drilling Tools
,”
Wear
,
267
(
5
), pp.
1041
1045
.
33.
Paggett
,
J. W.
,
Drake
,
E. F.
,
Krawitz
,
A. D.
,
Winholtz
,
R. A.
, and
Griffin
,
N. D.
,
2002
, “
Residual Stress and Stress Gradients in Polycrystalline Diamond Compacts
,”
Int. J. Refract. Met. Hard Mater.
,
20
(
3
), pp.
187
194
.
34.
McNamara
,
D.
,
Alveen
,
P.
,
Damm
,
S.
,
Carolan
,
D.
,
Rice
,
J. H.
,
Murphy
,
N.
, and
Ivanković
,
A.
,
2015
, “
A Raman Spectroscopy Investigation Into the Influence of Thermal Treatments on the Residual Stress of Polycrystalline Diamond
,”
Int. J. Refract. Met. Hard Mater.
,
52
, pp.
114
122
.
35.
Cao
,
P.-L.
,
Liu
,
B.-C.
,
Yin
,
K.
, and
Zhang
,
Z.-P.
,
2006
, “
Optimization Design and Residual Thermal Stress Analysis of PDC Functionally Graded Materials
,”
J. Zhejiang Univ., Sci., A
,
7
(
8
), pp.
1318
1323
.
36.
Smith
,
J. R.
,
Lund
,
J. B.
, and
Galloway
,
R. K.
,
2002
, “
Friction on PDC Cutters at High Normal Stress
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
146
153
.
37.
Kuru
,
E.
, and
Wojtanowicz
,
A. K.
,
1995
, “
An Experimental Study of Sliding Friction Between PDC Drill Cutters and Rocks
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
32
(
3
), pp.
277
283
.
38.
Wang
,
J.
,
Xue
,
Q.
,
Liu
,
B.
,
Li
,
L.
,
Li
,
F.
,
Zhang
,
K.
, and
Zang
,
Y.
,
2020
, “
Experimental Measurement on Friction Performance of PDC Bearings for Oil Drilling Under Different Working Conditions
,”
Measurement
,
163
, p.
107988
.
39.
Yin
,
R. K.
,
2018
,
Case Study Research and Applications: Design and Methods
,
SAGE
,
Los Angeles, CA
.
40.
Yangui
,
W.
,
Kallel
,
M.
,
Elleuch
,
K.
, and
Guermazi
,
N.
,
2024
, “
Characterization of Wear and Friction Between X160CrMoV12 Tool Steel and Carbon Steel Sheet During Reciprocating Sliding Tests
,”
Int. J. Adv. Manuf. Technol.
,
130
(
5
), pp.
2475
2488
.
41.
Blau
,
P. J.
,
2009
,
Friction Science and Technology: From Concepts to Applications
,
CRC Press
,
Boca Raton, FL
.
42.
Barrett
,
R. T.
,
1990
,
Fastener Design Manual
,
NASA Lewis Research Center
,
Cleveland, OH
. https://ntrs.nasa.gov/citations/19900009424
43.
Acar
,
E.
,
Bayrak
,
G.
,
Jung
,
Y.
,
Lee
,
I.
,
Ramu
,
P.
, and
Ravichandran
,
S. S.
,
2021
, “
Modeling, Analysis, and Optimization Under Uncertainties: A Review
,”
Struct. Multidiscipl. Optim.
,
64
(
5
), pp.
2909
2945
.
44.
Menezes
,
P. L.
,
Nosonovsky
,
M.
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2013
, “Friction and Wear,”
Tribology for Scientists and Engineers: From Basics to Advanced Concepts
,
P. L.
Menezes
,
M.
Nosonovsky
,
S. P.
Ingole
,
S. V.
Kailas
, and
M. R.
Lovell
, eds.,
Springer
,
New York
, pp.
43
91
.
45.
Plasencia
,
J.
,
Andreotti
,
M.
,
Wang
,
H.
, and
Alam
,
Z.
, 2018, “
Subsea Seawater Treatment and Injection – Performance Tests of Filtration Membrane Modules at
,”
Proceedings of the Offshore Technology Conference
,
Houstin, TX
,
April 2018
.
46.
Sotoodeh
,
K.
,
2019
, “
A Review on Subsea Process and Valve Technology
,”
Mar. Syst. Ocean Technol.
,
14
(
4
), pp.
210
219
.
47.
Nehal
,
S. A.
, and
Amal
,
M. N.
,
2013
, “Lubrication and Lubricants,”
Tribology
,
G.
Jürgen
, ed.,
IntechOpen
,
Rijeka
,
Chap. 2
.
48.
Lozinskii
,
A. V.
,
Kuchin
,
D. P.
,
Efimov
,
V. N.
, and
Pakhomova
,
M. I.
,
2021
, “
Solving the Problems of High-Temperature Sulfur Corrosion in Primary Oil Refineries
,”
Chem. Technol. Fuels Oils
,
57
(
4
), pp.
613
618
.
49.
Jiménez
,
M. A.
,
Bielsa
,
J. M.
,
Rodríguez
,
R.
, and
Dobón
,
S.
,
2007
, “The Influence of Contact Pressure on the Dynamic Friction Coefficient in Cylindrical Rubber-Metal Contact Geometries,”
IUTAM Symposium on Computational Methods in Contact Mechanics. IUTAM Bookseries
, Vol.
3
,
P.
Wriggers
, and
U.
Nackenhorst
, eds.,
Springer
,
Netherlands
, pp.
257
275
.
50.
Ren
,
J.
, and
Yuan
,
H.
,
2022
, “
Contact Analysis and Friction Prediction of Non-Gaussian Random Surfaces
,”
Appl. Sci.
,
12
(
21
), p.
11237
.
51.
Shisode
,
M.
,
Hazrati
,
J.
,
Mishra
,
T.
,
de Rooij
,
M.
, and
van den Boogaard
,
T.
,
2021
, “
Evolution of Real Area of Contact Due to Combined Normal Load and Sub-Surface Straining in Sheet Metal
,”
Friction
,
9
(
4
), pp.
840
855
.
52.
Drobnič
,
S.
,
2014
, “Comparative Analysis,”
Encyclopedia of Quality of Life and Well-Being Research
,
A. C.
Michalos
, ed.,
Springer
,
Netherlands, Dordrecht
, pp.
1125
1127
.
53.
Blanchard
,
B. S.
, and
Fabrycky
,
W. J.
,
2011
,
Systems Engineering and Analysis
,
Pearson
,
Boston
.
54.
Straffelini
,
G.
,
2015
, “Wear Mechanisms,”
Friction and Wear: Methodologies for Design and Control
,
G.
Straffelini
, ed.,
Springer International Publishing
,
Cham
, pp.
85
113
.
55.
Sotoodeh
,
K.
,
2021
, “
Optimized Material Selection for Subsea Valves to Prevent Failure and Improve Reliability
,”
Life Cycle Reliab. Saf. Eng.
,
10
(
2
), pp.
173
182
.
56.
Butler
,
D. L.
,
Surface Roughness Measurement
,
Springer
,
USA
, pp.
1945
1949
.
57.
Gwidon Stachowiak
,
A. W. B.
,
2005
,
Engineering Tribology
, 3rd ed,
Elsevier
,
San Diego
.
58.
Arias-Cuevas
,
O.
,
Li
,
Z.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2010
, “
Rolling–Sliding Laboratory Tests of Friction Modifiers in Dry and Wet Wheel–Rail Contacts
,”
Wear
,
268
(
3
), pp.
543
551
.
59.
Wei
,
Y.
,
Wu
,
Y.
,
Chen
,
K.
, and
Sun
,
A.
,
2018
, “
Experiment Research on Friction Coefficient Between a Steel Plate and Rail in Transient Sliding Thermal Contact Through a Pendulum
,”
Results Phys.
,
11
, pp.
763
768
.
60.
Yang
,
Y.
,
Luan
,
H.
,
Guo
,
S.
,
Liu
,
F.
,
Dai
,
Y.
,
Zhang
,
C.
,
Zhang
,
D.
, and
Zhou
,
G.
,
2022
, “
Tribological Behaviors of Inconel 718–Tungsten Carbide Friction Pair With Sulfur Additive Lubrication
,”
Metals
,
12
(
11
), p.
1841
.
61.
American Petroleum Institute
,
2021
,
API SPEC 6A: Specification for Wellhead and Christmas Tree Equipment
,
American Petroleum Institute
,
Washington, DC
.
62.
Rabinowicz
,
E.
,
2013
,
Friction and Wear of Materials
, 2nd ed.,
Wiley
,
New York
.
63.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic–Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.
64.
Moore
,
D. F.
,
1975
, “Boundary Lubrication,”
Principles and Applications of Tribology
,
D. F.
Moore
, ed.,
Pergamon
,
New York
, pp.
133
153
.
65.
Torkashvand
,
K.
,
Joshi
,
S.
, and
Gupta
,
M.
,
2022
, “
Advances in Thermally Sprayed WC-Based Wear-Resistant Coatings: Co-Free Binders, Processing Routes and Tribological Behavior
,”
J. Therm. Spray Technol.
,
31
(
3
), pp.
342
377
.
66.
Lyu
,
Y.
,
Du
,
B.
,
Chen
,
G.
,
Zhao
,
G.
,
Cheng
,
Y.
,
Zhou
,
S.
,
Lv
,
Q.
,
Zhang
,
X.
, and
Han
,
W.
,
2022
, “
Microstructural Regulation, Oxidation Resistance, and Mechanical Properties of Cf/SiC/SiHfBOC Composites Prepared by Chemical Vapor Infiltration With Precursor Infiltration Pyrolysis
,”
J. Adv. Ceram.
,
11
(
1
), pp.
120
135
.
67.
Li
,
W.
,
Zhang
,
L.-C.
,
Wu
,
C.-H.
,
Cui
,
Z.-X.
,
Niu
,
C.
, and
Wang
,
Y.
,
2022
, “
Debris Effect on the Surface Wear and Damage Evolution of Counterpart Materials Subjected to Contact Sliding
,”
Adv. Manuf.
,
10
(
1
), pp.
72
86
.
68.
Hayward
,
I. P.
,
1991
, “
Friction and Wear Properties of Diamonds and Diamond Coatings
,”
Surf. Coat. Technol.
,
49
(
1
), pp.
554
559
.
69.
Mohrbacher
,
H.
,
Blanpin
,
B.
,
Celis
,
J. P.
, and
Roos
,
J. R.
,
1993
, “
Frictional Behaviour of Diamond-Like Carbon and Diamond Coatings in Oscillating Sliding
,”
Surf. Coat. Technol.
,
62
(
1
), pp.
583
588
.
70.
Mohrbacher
,
H.
,
Blanpain
,
B.
,
Celis
,
J. P.
, and
Roos
,
J. R.
,
1993
, “
Low Amplitude Oscillating Sliding Wear on Chemically Vapour Deposited Diamond Coatings
,”
Diamond Relat. Mater.
,
2
(
5
), pp.
879
884
.
71.
Blau
,
P.
,
Yust
,
C.
,
Bae
,
Y.
,
Besmann
,
T.
,
Lee
,
W.
, and
Bahadur
,
S.
,
1996
, “Friction and Wear of Self-Lubricating TiN-MoS 2 Coatings Produced by Chemical Vapor Deposition.”
Effect of Surface Coatings and Treatments on Wear
,
S.
Bahadur
, ed.,
ASTM International
,
Scranton, PA
, pp.
22
34
.
72.
Blau
,
P. J.
,
1992
, “Shapes and Other Attributes of Friction Break-in Curves,”
Friction and Wear Transitions in Materials
,
R. F.
Bunshah
, and
G. E.
McGuire
, eds.,
Noyes Publications
,
Park Ridge, NJ
, pp.
271
288
.
You do not currently have access to this content.