Graphical Abstract Figure

Double M-craft model with nine combined appendage schemes.tif" caption="Double M-craft model with nine combined appendage schemes

Graphical Abstract Figure

Double M-craft model with nine combined appendage schemes.tif" caption="Double M-craft model with nine combined appendage schemes

Close modal

Abstract

The double M-craft is a new type of high-performance multihull vessel that combines the gliding characteristics of a planing boat with the resistance-reducing characteristics of a hovercraft, but it also suffers from motion instability in regular waves. At present, there is scarce study on the effect of appendage on the motion stability of double M-craft in regular waves. By using the software star-ccm+ to numerically simulate the pitching and heaving motions of a double M-craft installed with tunnel hydrofoils and stern flaps in regular waves. Based on the overset mesh technology, the volume of fluid (VOF) method is used to capture the water–gas two-phase flow field. The 2-degree of freedom (2-DOF) motion of the rigid body is simulated by dynamic fluid-body interaction (DFBI). After investigating the effects of these combined appendages on the hydrodynamic performance, running attitude, and motion response of a double M-craft in regular waves, the optimal mounting parameters of the combined appendage have been obtained. The results have shown that all nine types of combined appendages can reduce the heave and pitch. The optimal combined appendage installation parameters include a hydrofoil longitudinal mounting position of 1/8L, an angle of attack of 3 deg, a stern flap length of 1.5%L, and a flap angle of 5 deg, which can effectively reduce the pitching response by about 8% and reduce the swaying response by about 2.6%, and enhance its longitudinal motion stability.

References

1.
Subramanian
,
V. A.
,
Subramanyam
,
P.
, and
Ali
,
N. S.
,
2007
, “
Pressure and Drag Influences Due to Tunnels in High-Speed Planing Craft
,”
Int. Shipbuild. Prog.
,
54
(
1
), pp.
25
44
. https://www.researchgate.net/publication/267767503
2.
Yousefi
,
R.
,
Shafaghat
,
R.
, and
Shakeri
,
M.
,
2014
, “
High-Speed Planing Hull Resistance Reduction Using Tunnels
,”
Ocean Eng.
,
84
, pp.
54
60
.
3.
Li
,
S.
,
Zhang
,
J.
,
Jian
,
R.
,
Wang
,
S.
, and
Wang
,
B.
,
2022
, “
Research Progress of M-Type Structure and Hydrodynamic Performance
,”
Ship Eng.
,
44
(
6
), pp.
39
46
.
4.
Ueng
,
S. K.
,
Lin
,
D.
, and
Liu
,
C. H.
,
2008
, “
A Ship Motion Simulation System
,”
Virtual Reality
,
12
(
1
), pp.
65
76
.
5.
Katayama
,
T.
,
Hinami
,
T.
, and
Ikeda
,
Y.
,
2000
, “
Longitudinal Motion of a Super High-Speed Planing Craft in Regular Head Waves
,”
Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships
,
Osaka, Japan
,
January 2000
, pp.
214
220
.
6.
Ozturk
,
D.
,
Delen
,
C.
,
Mancini
,
S.
,
Serifoglu
,
M. O.
, and
Hizarci
,
T.
,
2021
, “
Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves
,”
J. Mar. Sci. Eng.
,
9
(
5
), p.
504
.
7.
Sun
,
H.
,
Zou
,
J.
,
Sun
,
Z.
,
Lu
,
S.
,
2020
, “
Numerical Investigations on the Resistance and Longitudinal Motion Stability of a High-Speed Planing Trimaran
,”
J. Mar. Sci. Eng.
,
8
(
11
), p.
830
.
8.
Sun
,
Y. F.
,
Zong
,
Z.
, and
Jiang
,
Y. C.
,
2020
, “
Review of Longitudinal Motion and Controls of Ships on Waves
,”
Chin. J. Ship Res.
,
15
(
1
), pp.
1
12
.
9.
Abbasi A
,
R.
,
Ghassemi
,
H.
, and
He
,
G.
,
2021
, “
Hydrodynamic Performance of the 3D Hydrofoil at the Coupled Oscillating Heave and Pitch Motions
,”
Strojnícky časopis-J. Mech. Eng.
,
71
(
2
), pp.
1
18
.
10.
Li
,
A.
, and
Li
,
Y.
,
2019
, “
Numerical and Experimental Study on Seakeeping Performance of a High-Speed Trimaran With T-Foil in Head Waves
,”
Pol. Marit. Res.
,
26
(
3
), pp.
65
77
.
11.
Shen
,
H.
,
Xiao
,
Q.
,
Zhou
,
J.
,
Su
,
Y.
, and
Bi
,
X.
,
2022
, “
Design of Hydrofoil for the Resistance Improvement of Planing Boat Based on CFD Technology
,”
Ocean Eng.
,
255
, p.
111413
.
12.
Cusanelli
,
D. S.
, and
Hundley
,
L.
,
1999
, “
Stern Flap Powering Performance on a Spruance Class Destroyer: Ship Trials and Model Experiments
,”
Nav. Eng. J.
,
111
(
2
), pp.
69
81
.
13.
Ghadimi
,
P.
,
Dashtimanesh
,
A.
, and
Chekab
,
M. A. F.
,
2016
, “
Introducing a New Flap Form to Reduce the Transom Waves Using a 3-D Numerical Analysis
,”
Int. J. Comput. Sci. Eng.
,
12
(
4
), pp.
265
275
.
14.
Zhang
,
L.
,
Zhang
,
J.
, and
Shang
,
Y.
,
2020
, “
Stern Flap–Waterjet–Hull Interactions and Mechanism: A Case of Waterjet-Propelled Trimaran With Stern Flap
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
2
), p.
021203
.
15.
Song
,
K.-w
,
Guo
,
C.-y
,
Gong
,
J.
,
Li
,
P.
, and
Wang
,
L.-z.
,
2018
, “
Influence of Interceptors, Stern Flaps, and Their Combinations on the Hydrodynamic Performance of a Deep-Vee Ship
,”
Ocean Eng.
,
170
, pp.
306
320
.
16.
Li
,
Y.
,
Li
,
A.
,
Gong
,
J.
,
Fu
,
Z.
, and
Dai
,
K.
,
2021
, “
Numerical Investigation on Added Resistance and Motions of a High-Speed Trimaran Equipped With T-Foil and Stern Flap in Regular Head and Oblique Waves for Varying Wave Steepness
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
1
), pp.
1
21
.
17.
Zou
,
J.
,
Lu
,
S.
,
Sun
,
H.
,
Zan
,
L.
, and
Cang
,
J.
,
2021
, “
Experimental Study on Motion Behavior and Longitudinal Stability Assessment of a Trimaran Planing Hull Model in Calm Water
,”
J. Mar. Sci. Eng.
,
9
(
2
), p.
164
.
18.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.
19.
Chan
,
W.
,
Gomez
,
R.
, III
,
Rogers
,
S.
, and
Buning
,
P. G.
,
2002
, “
Best Practices in Overset Grid Generation
,”
32nd AIAA Fluid Dynamics Conference and Exhibit
,
St. Louis, MO
,
June 24–26
, p.
3191
.
20.
STAR-CCM+
,
2018
,
STAR-CCM User Guide, Version 13.02
,
SIEMENS
,
Simens, Plano, TX
.
21.
Zhang
,
Y.
,
2020
, “
Research on Resistance-Reduction Principle and Hull Design of Double M-Ship Channel
,”
Master dissertation
,
Qingdao University of Science and Technology
,
Qingdao, Shandong
.
22.
Procedures I R
,
2011
, “
International Towing Tank Conference (ITTC): Practical Guidelines for Ship CFD Applications
,”
Proceedings of the 26th ITTC
,
Rio de Janeiro, Brazil
,
June 2011
, pp.
1
18
.
23.
Tezdogan
,
T.
,
Demirel
,
Y. K.
,
Kellett
,
P.
,
Khorasanchi
,
M.
,
Incecik
,
A.
, and
Turan
,
O.
,
2015
, “
Full-Scale Unsteady RANS CFD Simulations of Ship Behaviour and Performance in Head Seas Due to Slow Steaming
,”
Ocean Eng.
,
97
, pp.
186
206
.
24.
Bertorello
,
C.
,
Begovic
,
E.
, and
Mancini
,
S.
,
2015
, “
Hydrodynamic Performances of Small Size Swath Craft
,”
Brodogranja
,
66
(
4
), pp.
1
22
.
25.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1983
, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
,
Pergamon
,
Oxford, UK
, pp.
54
73
.
26.
Azcueta
,
R.
,
2000
, “
Ship Resistance Prediction by Free-Surface RANS Computations
,”
Ship Technol. Res.-Schiffstechnik
,
47
(
2
), pp.
47
62
.
27.
De Luca
,
F.
,
Mancini
,
S.
,
Miranda
,
S.
, and
Pensa
,
C.
,
2016
, “
An Extended Verification and Validation Study of CFD Simulations for Planing Hulls
,”
J. Ship Res.
,
60
(
02
), pp.
101
118
.
28.
Bertram
,
V
,
2012
,
Practical Ship Hydrodynamics
,
Elsevier
, pp.
1
18
.
29.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
30.
Fabio De Luca
,
Simone Mancini
,
Salvatore Miranda
, and
Claudio Pensa
,
2016
, “
An Extended Verification and Validation Study of CFD Simulations for Planing Hulls
,”
J. Ship Res.
,
60
(
2
), pp.
101
118
.
31.
Brizzolara
,
S.
, and
Serra
,
F.
,
2007
, “
Accuracy of CFD Codes in the Prediction of Planing Surfaces Hydrodynamic Characteristics
,”
Second International Conference on Marine Research and Transportation
,
Ischia
,
June 2007
.
32.
Ghassabzadeh
,
M.
, and
Ghassemi
,
H.
,
2014
, “
Determining of the Hydrodynamic Forces on the Multi-Hull Tunnel Vessel in Steady Motion
,”
J. Braz. Soc. Mech. Sci. Eng.
,
36
(
4
), pp.
697
708
.
33.
Roache P
,
J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
34.
Mao
,
X.
,
Yan
,
L.
,
Shen
,
X.
, and
Yu
,
Z.
,
2019
, “
Study on the Seakeeping of the Wave-Absorbing Double M-Craft in Waves Based on CFD
,”
ISOPE International Ocean and Polar Engineering Conference
,
Honolulu, HI
,
June 16–21
, pp.
1
17
.
35.
Shi
,
B-w.
,
2016
, “
Ship's Seakeeping Prediction Based on RealisticWave Spectrum and CFD
,”
Master dissertation
,
Dalian Maritime University
,
Dalian, Liaoning
.
36.
Ma
,
R.
,
2020
, “
Research on Navigation Resistance and Attitude of Catamaran Planing Crafts
,”
Master dissertation
,
Harbin Engineering University
,
Harbin, Heilong Jiang
.
37.
Garg
,
N.
,
Pearce
,
B. W.
,
Brandner
,
P. A.
,
Phillips
,
A. W.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2019
, “
Experimental Investigation of a Hydrofoil Designed via Hydrostructural Optimization
,”
J. Fluids Struct.
,
84
, pp.
243
262
.
38.
Kumari
,
N.
, and
Chakraborty
,
A.
,
2022
, “
The Hydrodynamic Interaction of Turbulent Flow With Tandem Hydrofoils in Presence of a Free Surface
,”
OCEANS 2022-Chennai
,
Chennai, India
,
Feb. 21–24
, IEEE, pp.
1
6
.
39.
Cumming
,
D.
,
Pallard
,
R.
,
Thornhill
,
E.
,
Hally
,
D.
, and
Dervin
,
M.
,
2006
, “
Hydrodynamic Design of a Stern Flap Appendage for the Halifax Class Frigates
,”
Proceedings of MARI TECH
,
Halifax, NS
,
June
, pp.
14
16
.
40.
Zou
,
J.
,
Lu
,
S.
,
Jiang
,
Y.
,
Sun
,
H.
, and
Li
,
Z.
,
2019
, “
Experimental and Numerical Research on the Influence of Stern Flap Mounting Angle on Double-Stepped Planing Hull Hydrodynamic Performance
,”
J. Mar. Sci. Eng.
,
7
(
10
), p.
346
.
41.
Le
,
T. H.
,
Anh
,
N. D.
,
Tu
,
T. N.
,
Hoa
,
N. T. N.
, and
Ngoc
,
V. M.
,
2023
, “
Numerical Investigation of Length to Beam Ratio Effects on Ship Resistance Using Ranse Method
,”
Pol. Mar. Res.
,
30
(
1
), pp.
13
24
.
You do not currently have access to this content.