Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The seabed soil of the polymetallic nodule mining area is relatively thin, soft, and fluid, which will produce large deformation under external disturbance. Its undrained shear strength is related to strain-rate and strain-softening effect. It is an important engineering safety problem for the deep-sea mining vehicle (DSMV) to travel in the soft seabed, and its sinkage is a vital index affecting the traction performance. It is necessary to study the sinkage performance of the DSMV under the characteristics of large soil deformation, but there are only few existing studies. This study established a numerical model of seabed soft soil with Tresca constitutive considering strain-rate and strain-softening effects. First, a numerical simulation study was carried out on the interaction between the DSMV track plate and the seabed soil, and the influence of track plate structures on the pressure–sinkage characteristic was obtained. Then, a simplified three-dimensional model of the “PIONEER-I” DSMV was established. Under the condition of wet weight and initial vertical velocity, the influence of different initial bottoming velocities, weight, and soil parameters on the sinkage of the DSMV was obtained. An empirical prediction model of the DSMV sinkage was established based on the energy method and numerical calculation results.

References

1.
Leng
,
D.
,
Shao
,
S.
,
Xie
,
Y.
,
Wang
,
H.
, and
Liu
,
G.
,
2021
, “
A Brief Review of Recent Progress on Deep Sea Mining Vehicle
,”
Ocean Eng.
,
228
(
5
), p.
108565
.
2.
Hein
,
J. R.
,
Koschinsky
,
A.
, and
Kuhn
,
T.
,
2020
, “
Deep-Ocean Polymetallic Nodules as a Resource for Critical Materials
,”
Nat. Rev. Earth Environ.
,
1
(
3
), pp.
158
169
.
3.
Hein
,
J. R.
,
Mizell
,
K.
,
Koschinsky
,
A.
, and
Conrad
,
T. A.
,
2013
, “
Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison With Land-Based Resources
,”
Ore Geol. Rev.
,
51
(
6
), pp.
1
14
.
4.
Sha
,
F.
,
Xi
,
M.
,
Chen
,
X.
,
Liu
,
X.
,
Niu
,
H.
, and
Zuo
,
Y.
,
2023
, “
A Recent Review on Multi-physics Coupling Between Deep-Sea Mining Equipment and Marine Sediment
,”
Ocean Eng.
,
276
(
5
), p.
114229
.
5.
Hong
,
S.
, and
Choi
,
J.
,
2001
, “
Experimental Study on Grouser Shape Effects on Trafficability of Extremely Soft Seabed
,”
Presented at the International Society of Offshore and Polar Engineers
,
Szczecin, Poland
,
Sept. 23–27
, pp.
115
121
.
6.
Dutta
,
S.
,
Hawlader
,
B.
, and
Phillips
,
R.
,
2015
, “
Finite Element Modeling of Partially Embedded Pipelines in Clay Seabed Using Coupled Eulerian-Lagrangian Method
,”
Can. Geotech. J.
,
52
(
1
), pp.
58
72
.
7.
Dutta
,
S.
, and
Hawlader
,
B.
,
2019
, “
Pipeline–Soil–Water Interaction Modelling for Submarine Landslide Impact on Suspended Offshore Pipelines
,”
Géotechnique
,
69
(
1
), pp.
29
41
.
8.
Liu
,
J.
,
Bu
,
N.
,
Han
,
C.
, and
Yi
,
P.
,
2022
, “
Numerical Modelling on Anchor–Soil–Water Interaction for Dynamic Installation of Gravity Installed Anchors
,”
Ocean Eng.
,
244
(
1
), p.
110412
.
9.
Wang
,
Y.
,
Zou
,
X.
,
Zhou
,
M.
,
Zhang
,
X.
, and
Tian
,
Y.
,
2023
, “
Dynamic Installation of Torpedo Anchors in Slightly Overconsolidated Clay-Overlaying-Sand Deposit
,”
Comput. Geotech.
,
158
(
6
), p.
105399
.
10.
Zhao
,
J.
,
Zhu
,
Q.
,
Huang
,
W.
,
Zhang
,
Y.
, and
Liu
,
L.
,
2023
, “
Spudcan Deep Penetration in Multi-layered Soils Incorporating Sand Relative Density
,”
J. Mar. Sci. Eng.
,
11
(
1
), p.
33
.
11.
Li
,
C.
,
Yu
,
L.
,
Kong
,
X.
, and
Zhang
,
H.
,
2023
, “
Estimation of Undrained Shear Strength in Rate-Dependent and Strain-Softening Surficial Marine Clay Using Ball Penetrometer
,”
Comput. Geotech.
,
153
(
1
), p.
105084
.
12.
Hashemi
,
S.
, and
Shiri
,
H.
,
2022
, “
Numerical Modeling of Ice–Seabed Interaction in Clay by Incorporation of the Strain Rate and Strain-Softening Effects
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(1
), p.
042101
.
13.
Randolph
,
M. F.
,
Wang
,
D.
,
Zhou
,
H.
, and
Hu
,
Y.
,
2008
, “
Large Deformation Finite Element Analysis for Offshore Applications
,”
Presented at the International Association for Computer Methods and Advances in Geomechanics
,
Goa, India
,
Oct. 1–6
, pp.
3307
3318
.
14.
Guo
,
X.
,
Liu
,
Z.
,
Zheng
,
J.
,
Luo
,
Q.
, and
Liu
,
X.
,
2023
, “
Bearing Capacity Factors of T-Bar from Surficial to Stable Penetration Into Deep-Sea Sediments
,”
Soil Dyn. Earthq. Eng.
,
165
(
2
), p.
107671
.
15.
Augarde
,
C. E.
,
Lee
,
S. J.
, and
Loukidis
,
D.
,
2021
, “
Numerical Modelling of Large Deformation Problems in Geotechnical Engineering: A State-of-the-Art Review
,”
Soils Found.
,
61
(
6
), pp.
1718
1735
.
16.
Raie
,
M.
, and
Tassoulas
,
J. L.
,
2006
, “Numerical Modeling of Torpedo Anchors,” OTRC Library No: 9/06B174.
17.
Raie
,
M. S.
, and
Tassoulas
,
J. L.
,
2009
, “
Installation of Torpedo Anchors: Numerical Modeling
,”
J. Geotech. Geoenviron.
,
135
(
12
), pp.
1805
1813
.
18.
Han
,
C.
,
Zhang
,
Y.
,
Liu
,
J.
, and
Wang
,
X.
,
2021
, “
Interpreting Strength Parameters in Soft Clays From a New Free-Fall Penetrometer
,”
Comput. Geotech.
,
135
(
7
), p.
104157
.
19.
Hu
,
Y.
, and
Randolph
,
M. F.
,
1998
, “
A Practical Numerical Approach for Large Deformation Problems in Soil
,”
Int. J. Numer. Anal. Met.
,
327–350
(
22
), pp.
327
350
.
20.
Tian
,
Y.
,
Gaudin
,
C.
, and
Cassidy
,
A. M. J.
,
2014
, “
Improving Plate Anchor Design With a Keying Flap
,”
Am. Soc. Civil Eng.
,
140
(
5
), p.
04014009
.
21.
Yu
,
L.
,
Hu
,
Y.
,
Liu
,
J.
,
Randolph
,
M. F.
, and
Kong
,
X.
,
2012
, “
Numerical Study of Spudcan Penetration in Loose Sand Overlying Clay
,”
Comput. Geotech.
,
46
(
9
), pp.
1
12
.
22.
Zhou
,
H.
, and
Randolph
,
M. F.
,
2007
, “
Computational Techniques and Shear Band Development for Cylindrical and Spherical Penetrometers in Strain-Softening Clay
,”
Int. J. Geomech.
,
7
(
4
), pp.
287
295
.
23.
Zhou
,
H.
, and
Randolph
,
M. F.
,
2009
, “
Numerical Investigations Into Cycling of Full-Flow Penetrometers in Soft Clay
,”
Géotechnique
,
59
(
10
), pp.
801
812
.
24.
Ragni
,
R.
,
Wang
,
D.
,
Mašín
,
D.
,
Bienen
,
B.
,
Cassidy
,
M. J.
, and
Stanier
,
S. A.
,
2016
, “
Numerical Modelling of the Effects of Consolidation on Jack-Up Spudcan Penetration
,”
Comput. Geotech.
,
78
(
9
), pp.
25
37
.
25.
Benson
,
D. J.
,
1992
, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2
), pp.
235
394
.
26.
Benson
,
D. J.
, and
Okazawa
,
S.
,
2004
, “
Contact in a Multi-material Eulerian Finite Element Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
39–41
), pp.
4277
4298
.
27.
Sumith
,
S.
,
Shankar
,
K.
, and
Kannan
,
K.
,
2022
, “
Numerical Study of Traction at Grouser–Soft Seabed Interface Incorporating Experimentally Validated Constitutive Model
,”
International Conference on Energy, Material Sciences and Mechanical Engineering
,
New Delhi, India
,
Oct. 30– Nov. 1
,
Singapore, Springer Singapore Pte. Limited, pp. 1079–1090
.
28.
Sun
,
P.
,
Lu
,
H.
,
Yang
,
J.
,
Liu
,
M.
,
Li
,
S.
, and
Zhang
,
B.
,
2022
, “
Numerical Study on Shear Interaction Between the Track Plate of Deep-Sea Mining Vehicle and the Seafloor Sediment Based on CEL Method
,”
Ocean Eng.
,
266
(
12
), p.
112785
.
29.
Sun
,
P.
,
Lu
,
H.
,
Yang
,
J.
,
Deng
,
L.
,
Liu
,
M.
, and
Li
,
S.
,
2022
, “
Numerical Study on Multiple Parameters of Sinkage Simulation Between the Track Plate of the Deep-Sea Mining Vehicle and the Seafloor Soil
,”
J. Mar. Sci. Eng.
,
10
(
11
), p.
1680
.
30.
Kim
,
Y. H.
, and
Hossain
,
M. S.
,
2015
, “
Dynamic Installation of OMNI-Max Anchors in Clay: Numerical Analysis
,”
Géotechnique
,
65
(
12
), pp.
1029
1037
.
31.
Janarthanan
,
C.
,
Kuttikrishnan
,
G.
,
Sundaramoorthi
,
V.
,
Chandran
,
V.
, and
Ramadass
,
G. A.
,
2022
, “
Deep Sea Soil Sinkage Simulation and Experimental Studies for Development of Deep Water Mining Machine
,”
Mar. Technol. Soc. J.
,
52
(
1
), p.
73
.
32.
Ma
,
W.
,
Rao
,
Q.
,
Xu
,
F.
, and
Feng
,
K.
,
2016
, “
Impact Compressive Creep Characteristics of Simulative Soil for Deep-Sea Sediment
,”
Mar. Georesour. Geotech.
,
34
(
4
), pp.
356
364
.
33.
Xu
,
F.
,
Rao
,
Q.
,
Zhang
,
J.
, and
Ma
,
W.
,
2018
, “
Compression-Shear Coupling Rheological Constitutive Model of the Deep-Sea Sediment
,”
Mar. Georesour. Geotech.
,
36
(
3–4
), pp.
288
296
.
34.
Reshma
,
K. V.
,
Amudha
,
K.
,
Janarthanan
,
C.
,
Ramesh
,
N. R.
,
Gopakumar
,
K.
,
Ramadass
,
G. A.
, and
Atmanand
,
M. A.
,
2015
, “
Experimental Study on Sinkage and Breakout Forces for Soft Soil
,”
IEEE Xplore
,
Chennai, India
,
February 23-25
,
pp. 1-5
.
35.
Dai
,
X.
,
Xu
,
T.
, and
Chen
,
J.
,
2021
, “
Physical and Mechanical Properties of Deep Oceanic Sediments Cored From the Bottom of Challenger Deep, Mariana Trench
,”
Geofluids
,
2021
(
6
), pp.
1
11
.
36.
Kim
,
Y. H.
,
Hossain
,
M. S.
, and
Wang
,
D.
,
2015
, “
Effect of Strain Rate and Strain Softening on Embedment Depth of a Torpedo Anchor in Clay
,”
Ocean Eng.
,
108
(
9
), pp.
704
715
.
37.
Kim
,
Y. H.
,
Hossain
,
M. S.
,
Wang
,
D.
, and
Randolph
,
M. F.
,
2015
, “
Numerical Investigation of Dynamic Installation of Torpedo Anchors in Clay
,”
Ocean Eng.
,
108
(
9
), pp.
820
832
.
38.
Zhao
,
J.
,
Jang
,
B.
, and
Duan
,
M.
,
2017
, “
On Spudcan Deep Penetration Using Eulerian Finite Element in Multi-layer Sediments: Soil Plug Mechanism
,”
Ships Offshore Struct.
,
12
(
5
), pp.
715
721
.
39.
Boukpeti
,
N.
,
White
,
D.
,
Randolph
,
M.
, and
Low
,
H. E.
,
2009
, “
Characterization of the Solid-Fluid Transition of Fine-Grained Sediments
,”
Presented at the Offshore and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
, pp.
293
303
.
40.
Einav
,
I.
, and
Randolph
,
M.
,
2006
, “
Effect of Strain Rate on Mobilised Strength and Thickness of Curved Shear Bands
,”
Géotechnique
,
56
(
7
), pp.
501
504
.
41.
Hu
,
Y.
, and
Randolph
,
M. F.
,
1998
, “
Deep Penetration of Shallow Foundations on Non-Homogeneous Soil
,”
Soils Found.
,
38
(
1
), pp.
241
246
.
42.
Zhu
,
H.
, and
Randolph
,
M. F.
,
2011
, “
Numerical Analysis of a Cylinder Moving Through Rate-Dependent Undrained Soil
,”
Ocean Eng.
,
38
(
7
), pp.
943
953
.
43.
Ding
,
L.
,
Gao
,
H.
,
Deng
,
Z.
,
Li
,
Y.
, and
Liu
,
G.
,
2014
, “
New Perspective on Characterizing Pressure–Sinkage Relationship of Terrains for Estimating Interaction Mechanics
,”
J. Terramechanics
,
52
(
4
), pp.
57
76
.
44.
Lyasko
,
M.
,
2010
, “
LSA Model for Sinkage Predictions
,”
J. Terramechanics
,
47
(
1
), pp.
1
19
.
45.
Yang
,
C.
,
Cai
,
L.
,
Liu
,
Z.
,
Tian
,
Y.
, and
Zhang
,
C.
,
2016
, “
A Calculation Method of Track Shoe Thrust on Soft Ground for Splayed Grouser
,”
J. Terramechanics
,
65
(
6
), pp.
38
48
.
46.
Pan
,
G.
,
Sun
,
J.
,
Wang
,
X.
,
Yang
,
F.
, and
Liu
,
Z.
,
2021
, “
Construction and Experimental Verification of Sloped Terrain Soil Pressure-Sinkage Model
,”
Agriculture
,
11
(
3
), p.
243
.
47.
Li
,
Y.
,
He
,
D.
,
Si
,
Q.
, and
Meng
,
X.
,
2021
, “
Effect of Track Shoes Structural Parameters on Traction Performance of Unmanned Underwater Tracked Bulldozer
,”
Ocean Eng.
,
237
(
10
), p.
109655
.
48.
Zheng
,
J.
,
Hossain
,
M. S.
, and
Wang
,
A. D.
,
2015
, “
Numerical Modeling of Spudcan Deep Penetration in Three-Layer Clays
,”
Am. Soc. Civil Eng.
,
15
(
6
), p.
04014089
.
49.
Einav
,
I.
, and
Randolph
,
M. F.
,
2005
, “
Combining Upper Bound and Strain Path Methods for Evaluating Penetration Resistance
,”
Int. J. Numer. Meth. Eng.
,
63
(
14
), pp.
1991
2016
.
50.
Aubeny
,
C. P.
, and
Shi
,
H.
,
2007
, “
Effect of Rate-Dependent Soil Strength on Cylinders Penetrating Into Soft Clay
,”
IEEE J. Ocean. Eng.
,
32
(
1
), pp.
49
56
.
51.
O'Loughlin
,
C. D.
,
Lehane
,
B. M.
,
Gaudin
,
C.
, and
Randolph
,
M. F.
,
2009
, “
Rate Effects on Penetrometer Resistance in Kaolin
,”
Géotechnique
,
59
(
1
), pp.
41
52
.
52.
Richardson
,
M. D.
,
O’Loughlin
,
C. D.
,
Randolph
,
M. F.
, and
Gaudin
,
C.
,
2009
, “
Setup Following Installation of Dynamic Anchors in Normally Consolidated Clay
,”
J. Geotech. Geoenviron.
,
135
(
4
), pp.
487
496
.
53.
Boukpeti
,
N.
,
White
,
D. J.
,
Randolph
,
M. F.
, and
Low
,
H. E.
,
2012
, “
Strength of Fine-Grained Soils at the Solid–Fluid Transition
,”
Géotechnique
,
62
(
3
), pp.
213
226
.
54.
Biscontin
,
G.
, and
Pestana
,
J. M.
,
2001
, “
Influence of Peripheral Velocity on Vane Shear Strength of an Artificial Clay
,”
Geotech. Test. J.
,
4
(
2
), pp.
423
429
.
55.
Nazem
,
M.
,
Carter
,
J. P.
,
Airey
,
D. W.
, and
Chow
,
S. H.
,
2012
, “
Dynamic Analysis of a Smooth Penetrometer Free-Falling Into Uniform Clay
,”
Géotechnique
,
62
(
10
), pp.
893
905
.
56.
Moavenian
,
M. H.
,
Nazem
,
M.
,
Carter
,
J. P.
, and
Randolph
,
M. F.
,
2016
, “
Numerical Analysis of Penetrometers Free-Falling Into Soil With Shear Strength Increasing Linearly With Depth
,”
Comput. Geotech.
,
72
(
2
), pp.
57
66
.
57.
Sheahan
,
T. C.
,
Ladd
,
C. C.
, and
Germaine
,
J. T.
,
1996
, “
Rate-Dependent Undrained Shear Behavior of Saturated Clay
,”
J. Geotech. Eng.
,
122
(
2
), pp.
99
108
.
58.
Choi
,
J.
,
Hong
,
S.
,
Chi
,
S. B.
,
Lee
,
H. B.
,
Park
,
C. K.
,
Kim
,
H. W.
,
Yeu
,
T. K.
, and
Lee
,
T. H.
,
2011
, “
Probability Distribution for the Shear Strength of Seafloor Sediment in the KR5 Area for the Development of Manganese Nodule Miner
,”
Ocean Eng.
,
38
(
17–18
), pp.
2033
2041
.
59.
Hashemi
,
S.
,
Shiri
,
H.
, and
Dong
,
X.
,
2022
, “
The Influence of Layered Soil on Ice–Seabed Interaction: Soft Over Stiff Clay
,”
Appl. Ocean Res.
,
120
(
3
), p.
103033
.
60.
Zhou
,
S.
,
Zhou
,
M.
,
Tian
,
Y.
, and
Zhang
,
X.
,
2022
, “
Numerical Investigation of Caisson With Pad-Eye Stiffener Installation Into Nonhomogeneous Clay
,”
Appl. Ocean Res.
,
121
(
4
), p.
103077
.
61.
Zhou
,
M.
,
Liu
,
H.
,
Hossain
,
M. S.
,
Hu
,
Y.
, and
Zhang
,
T.
,
2016
, “
Numerical Simulation of Plug Formation During Casing Installation of Cast-in-Place Concrete Pipe (PCC) Piles
,”
Can. Geotech. J.
,
53
(
7
), pp.
1
17
.
62.
Randolph
,
M. F.
,
2004
, “
Characterisation of Soft Sediments for Offshore Applications
,”
Proceedings of the 2nd International Conference on Site Characterization
,
Rotterdam, The Netherlands
,
Sept. 19-22
,
pp. 209-232
.
63.
Chen
,
X.
,
Han
,
C.
,
Liu
,
J.
, and
Hu
,
Y.
,
2021
, “
Interpreting Strength Parameters of Strain-Softening Clay From Shallow to Deep Embedment Using Ball and T-Bar Penetrometers
,”
Comput. Geotech.
,
138
(
10
), p.
104331
.
64.
Lunne
,
T.
,
Andersen
,
K. H.
,
Low
,
H. E.
,
Randolph
,
M. F.
, and
Sjursen
,
M.
,
2011
, “
Guidelines for Offshore In Situ Testing and Interpretation in Deepwater Soft Clays
,”
Can. Geotech. J.
,
48
(
4
), pp.
543
556
.
65.
Liu
,
H.
,
Xu
,
K.
, and
Zhao
,
Y.
,
2016
, “
Numerical Investigation on the Penetration of Gravity Installed Anchors by a Coupled Eulerian–Lagrangian Approach
,”
Appl. Ocean Res.
,
60
(
10
), pp.
94
108
.
66.
O'Loughlin
,
C. D.
,
Richardson
,
M. D.
,
Randolph
,
M. F.
, and
Gaudin
,
C.
,
2013
, “
Penetration of Dynamically Installed Anchors in Clay
,”
Géotechnique
,
63
(
11
), pp.
909
919
.
You do not currently have access to this content.