Abstract

The reliable design of offshore aquaculture structures (OAS) for fish farming in the open ocean is vital to the marine aquaculture industry in the future. However, the lack of easy-to-access numerical tools for the dynamic analysis of OAS challenges the sustainable development of marine aquaculture. This article presents a newly developed numerical library under an open-source, finite-element analysis code, Code_Aster, enabling the dynamic analysis of OAS. A numerical model of OAS is first developed using the present numerical library and then validated against experiments. The validation shows a good agreement in terms of structural motions and tensions in mooring lines. After that, the dynamic responses of this model are analyzed subjected to irregular waves and current conditions from field measurements on an offshore fish farm site. The results indicate that a negative mean pitch angle will occur when the current velocity is large.

References

1.
Naylor
,
R. L.
,
Hardy
,
R. W.
,
Buschmann
,
A. H.
,
Bush
,
S. R.
,
Cao
,
L.
,
Klinger
,
D. H.
,
Little
,
D. C.
,
Lubchenco
,
J.
,
Shumway
,
S. E.
, and
Troell
,
M.
,
2021
, “
A 20-Year Retrospective Review of Global Aquaculture
,”
Nature
,
591
(
7851
), pp.
551
563
.
2.
Lester
,
S. E.
,
Gentry
,
R. R.
,
Kappel
,
C. V.
,
White
,
C.
, and
Gaines
,
S. D.
,
2018
, “
Opinion: Offshore Aquaculture in the United States: Untapped Potential in Need of Smart Policy
,”
Proc. Natl. Acad. Sci.
,
115
(
28
), pp.
7162
7165
.
3.
Morro
,
B.
,
Davidson
,
K.
,
Adams
,
T. P.
,
Falconer
,
L.
,
Holloway
,
M.
,
Dale
,
A.
,
Aleynik
,
D.
, et al
,
2021
, “
Offshore Aquaculture of Finfish: Big Expectations at Sea
,”
Rev. Aquac.
,
14
(
2
), pp.
791
815
.
4.
Jin
,
J.
,
Su
,
B.
,
Dou
,
R.
,
Luan
,
C.
,
Li
,
L.
,
Nygaard
,
I.
,
Fonseca
,
N.
, and
Gao
,
Z.
,
2021
, “
Numerical Modelling of Hydrodynamic Responses of Ocean Farm 1 in Waves and Current and Validation Against Model Test Measurements
,”
Mar. Struct.
,
78
, p.
103017
.
5.
Evans
,
O.
,
2019
, Offensive kinesere bygger ny havmerd med kapasitet på en million laks. iLaks.no., https://ilaks.no/offensive-kinesere-bygger-ny-havmerd-med-kapasitet-pa-en-million-laks/
6.
Bi
,
C.-W.
,
Zhao
,
Y.-P.
,
Dong
,
G.-H.
,
Cui
,
Y.
, and
Gui
,
F.-K.
,
2015
, “
Experimental and Numerical Investigation on the Damping Effect of Net Cages in Waves
,”
J. Fluids Struct.
,
55
, pp.
122
138
.
7.
Zhao
,
Y.-P.
,
Bi
,
C.-W.
,
Chen
,
C.-P.
,
Li
,
Y.-C.
, and
Dong
,
G.-H.
,
2015a
, “
Experimental Study on Flow Velocity and Mooring Loads for Multiple Net Cages in Steady Current
,”
Aquac. Eng.
,
67
, pp.
24
31
.
8.
Zhao
,
Y.
,
Guan
,
C.
,
Bi
,
C.
,
Liu
,
H.
, and
Cui
,
Y.
,
2019
, “
Experimental Investigations on Hydrodynamic Responses of a Semi-Submersible Offshore Fish Farm in Waves
,”
J. Mar. Sci. Eng.
,
7
(
7
), p.
238
.
9.
Klebert
,
P.
,
Lader
,
P.
,
Gansel
,
L.
, and
Oppedal
,
F.
,
2013
, “
Hydrodynamic Interactions on Net Panel and Aquaculture Fish Cages: A Review
,”
Ocean Eng.
,
58
, pp.
260
274
.
10.
Ruzzo
,
C.
,
Muggiasca
,
S.
,
Malara
,
G.
,
Taruffi
,
F.
,
Belloli
,
M.
,
Collu
,
M.
,
Li
,
L.
,
Brizzi
,
G.
, and
Arena
,
F.
,
2021
, “
Scaling Strategies for Multi-Purpose Floating Structures Physical Modeling: State of Art and New Perspectives
,”
Appl. Ocean Res.
,
108
, p.
102487
.
11.
Li
,
L.
,
Jiang
,
Z.
,
Høiland
,
A. V.
, and
Ong
,
M. C.
,
2018
, “
Numerical Analysis of a Vessel-Shaped Offshore Fish Farm
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041201
.
12.
Li
,
L.
,
Jiang
,
Z.
,
Ong
,
M. C.
, and
Hu
,
W.
,
2019
, “
Design Optimization of Mooring System: An Application to a Vessel-Shaped Offshore Fish Farm
,”
Eng. Struct.
,
197
, p.
109363
.
13.
Li
,
L.
, and
Ong
,
M.C.
,
2017
, “
A Preliminary Study of a Rigid Semi-Submersible Fish Farm for Open Seas
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
.
14.
Tsukrov
,
I.
,
Eroshkin
,
O.
,
Fredriksson
,
D.
,
Swift
,
M. R.
, and
Celikkol
,
B.
,
2003
, “
Finite Element Modeling of Net Panels Using a Consistent Net Element
,”
Ocean Eng.
,
30
(
2
), pp.
251
270
.
15.
Zhao
,
Y.-P.
,
Li
,
Y.-C.
,
Dong
,
G.-H.
,
Gui
,
F.-K.
, and
Teng
,
B.
,
2007
, “
A Numerical Study on Dynamic Properties of the Gravity Cage in Combined Wave-Current Flow
,”
Ocean Eng.
,
34
(
17–18
), pp.
2350
2363
.
16.
Zhao
,
Y.-P.
,
Wang
,
X.-X.
,
Decew
,
J.
,
Tsukrov
,
I.
,
Bai
,
X.-D.
, and
Bi
,
C.-W.
,
2015b
, “
Comparative Study of Two Approaches to Model the Offshore Fish Cages
,”
China Ocean Eng.
,
29
(
3
), pp.
459
472
.
17.
Endresen
,
P.C.
,
Birkevold
,
J.
,
Føre
,
M.
,
Fredheim
,
A.
,
Kristiansen
,
D.
, and
Lader
,
P.
,
2014
, “
Simulation and Validation of a Numerical Model of a Full Aquaculture Net-Cage System, in: Volume 7: Ocean Space Utilization; Professor Emeritus J. Randolph Paulling Honoring Symposium on Ocean Technology
,”
Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
, p. V007T05A006.
18.
Skjong
,
S.
,
Reite
,
K.-J.
, and
Aarsæther
,
K. G.
,
2021
, “
Lumped, Constrained Cable Modeling with Explicit State-Space Formulation Using an Elastic Version of Baumgarte Stabilization
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
7
), p.
061701
.
19.
Su
,
B.
,
Reite
,
K.-J.
,
Føre
,
M.
,
Aarsæther
,
K.G.
,
Alver
,
M.O.
,
Endresen
,
P.C.
,
Kristiansen
,
D.
,
Haugen
,
J.
,
Caharija
,
W.
, and
Tsarau
,
A.
,
2019
, “
A Multipurpose Framework for Modelling and Simulation of Marine Aquaculture Systems
,”
Presented at the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
.
20.
Cheng
,
H.
,
Li
,
L.
,
Aarsæther
,
K. G.
, and
Ong
,
M. C.
,
2020
, “
Typical Hydrodynamic Models for Aquaculture Nets: A Comparative Study Under Pure Current Conditions
,”
Aquac. Eng.
,
90
, p.
102070
.
21.
Cheng
,
H.
,
Ong
,
M. C.
,
Li
,
L.
, and
Chen
,
H.
,
2022
, “
Development of a Coupling Algorithm for Fluid-Structure Interaction Analysis of Submerged Aquaculture Nets
,”
Ocean Eng.
,
243
, p.
110208
.
22.
Antonutti
,
R.
,
Peyrard
,
C.
,
Incecik
,
A.
,
Ingram
,
D.
, and
Johanning
,
L.
,
2018
, “
Dynamic Mooring Simulation With Code_Aster With Application to a Floating Wind Turbine
,”
Ocean Eng.
,
151
, pp.
366
377
.
23.
DeCew
,
J.
,
Tsukrov
,
I.
,
Risso
,
A.
,
Swift
,
M. R.
, and
Celikkol
,
B.
,
2010
, “
Modeling of Dynamic Behavior of a Single-Point Moored Submersible Fish Cage Under Currents
,”
Aquac. Eng.
,
43
(
2
), pp.
38
45
.
24.
Kristiansen
,
T.
, and
Faltinsen
,
O. M.
,
2012
, “
Modelling of Current Loads on Aquaculture net Cages
,”
J. Fluids Struct.
,
34
, pp.
218
235
.
25.
Moe-Føre
,
H.
,
Lader
,
P. F.
,
Lien
,
E.
, and
Hopperstad
,
O. S.
,
2016
, “
Structural Response of High Solidity Net Cage Models in Uniform Flow
,”
J. Fluids Struct.
,
65
, pp.
180
195
.
26.
Næss
,
A.
, and
Moan
,
T.
,
2013
,
Stochastic Dynamics of Marine Structures
,
Cambridge University Press
,
New York
.
27.
Liu
,
H.-F.
,
Bi
,
C.-W.
, and
Zhao
,
Y.-P.
,
2020
, “
Experimental and Numerical Study of the Hydrodynamic Characteristics of a Semi-Submersible Aquaculture Facility in Waves
,”
Ocean Eng.
,
214
, p.
107714
.
28.
Bore
,
P.T.
, and
Amdahl
,
J.
,
2017
, “
Determination of Environmental Conditions Relevant for the Ultimate Limit State at an Exposed Aquaculture Location
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
.
29.
DNV GL
,
2010
,
DNVGL-RP-C205 Environmental Conditions and Environmental Loads
.
30.
Standards Norway
,
2009
,
NS 9415 Marine Fish Farms—Requirements for Design. In: Dimensioning, Production, Installation and Operation
.
31.
Zhao
,
F.
,
Kinoshita
,
T.
,
Bao
,
W.
,
Wan
,
R.
,
Liang
,
Z.
, and
Huang
,
L.
,
2011
, “
Hydrodynamics Identities and Wave-Drift Force of a Porous Body
,”
Appl. Ocean Res.
,
3
(
3
), pp.
169
177
.
You do not currently have access to this content.