Abstract

Nonlinear finite element models (FEMs) are commonly used to perform analysis in the time domain to simulate a limited number of stochastic loading scenarios that a slender marine structure may undergo, requiring a high computational time effort. Analytical equations and frequency domain analysis can be used to speed up these simulations, but they are not a convenient choice when high nonlinearities are present in the dynamic system. Alternative models can be developed to reduce the simulation time while maintaining a good accuracy level of the system’s response. This work proposes different strategies to develop artificial neural network (ANN) architectures, based on deep learning (DL) algorithms, which can predict multiple structural node responses at once, in time and space, significantly reducing the total training time when a great number of structural nodes are considered. A novel classification concept of ANN-based models is introduced for this application: the NodeNet and the LengthNet class types. In the first approach, the model predictor focuses on a single structural node, while in the latter the model focuses on a length (segment) comprising many structural nodes. The work also extends the response predictions of such marine structures from the top region down to the touchdown zone (TDZ).

References

1.
Orcina
,
2019
, “
OrcaFlex
,” https://orcina.com/orcaflex, Accessed June 28, 2019.
3.
Principia
,
2019
, “
Deeplines
,” http://www.principia-group.com/blog/product/produit-deeplines, Accessed June 29, 2019.
4.
Guarize
,
R.
,
2004
, “
Neural Networks in the Dynamic Analysis of Structures
,”
Master dissertation
,
COPPE/UFRJ
,
Rio de Janeiro, Brazil
(in Portuguese).
5.
Guarize
,
R.
,
Matos
,
N. A. F.
,
Sagrilo
,
L. V. S.
, and
Lima
,
E. C. P.
,
2008
, “
Neural Networks in the Dynamic Response Analysis of Slender Marine Structures
,”
Appl. Ocean Res.
,
29
(
4
), pp.
191
198
.
6.
Rocha
,
D. M.
,
2007
, “
Neural Network for Non-Linear Offshore Dynamic Systems Modelling With Hysteresis
,”
D.Sc. thesis
,
COPPE/UFRJ
,
Rio de Janeiro, Brazil
(in Portuguese).
7.
de Pina
,
A. C.
,
de Pina
,
A. A.
,
Albrecht
,
C. H.
,
de Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2013
, “
ANN-Based Surrogate Models for the Analysis of Mooring Lines and Risers
,”
Appl. Ocean Res.
,
41
, pp.
76
86
.
8.
Christiansen
,
N. H.
,
Voie
,
P. E. T.
, and
Hogsberg
,
J.
,
2013
, “
Efficient Mooring Line Fatigue Analysis Using
a
Hybrid Method Time Domain Simulation Scheme
,”
Proceedings of the 32th International Conference on Offshore Mechanics and Arctic Engineering
,
Nantes, France
,
June 9–14
, p. V001T01A035.
9.
Christiansen
,
N. H.
,
2014
, “
Hybrid Method Simulation of Slender Marine Structures
,”
Ph.D. thesis
,
Technical University of Denmark
,
Lyngby, Denmark
.
10.
Chaves
,
V. V.
,
2015
, “
Artificial Neural Networks Applied to the Analysis of Flexible Pipes
,”
Master’s dissertation
,
COPPE/UFRJ
,
Rio de Janeiro, Brazil
.
11.
Cortina
,
J. P. R.
,
2016
, “
Neural Networks Use on the Rigid Riser Fatigue Assessment
,”
Master’s dissertation
,
COPPE/UFRJ
,
Rio de Janeiro, Brazil
.
12.
Cortina
,
J. P. R.
,
Sousa
,
F. J. M.
, and
Sagrilo
,
L. V. S.
,
2018
, “
Neural Networks Applied to Wave-Induced Fatigue Analysis of Steel Risers
,”
J. Math. Prob. Eng.
,
2018
, Article ID 2719682.
13.
Srikonda
,
R.
,
Haakonsen
,
R.
,
Russo
,
M.
, and
Periyasamy
,
P.
,
2018
, “
Real-Time Wellhead Bending Moment Measurement Using Motion Reference Unit (MRU) Sensors and Machine Learning
,”
Proceedings of 37th International Conference on Offshore Mechanics and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, p.
V003T02A095
.
14.
Silva
,
V. R. M.
, and
Araujo
,
B. S.
,
2020
, “
Convolutional Neural Networks Applied to Flexible Pipes for Fatigue Calculations
,”
Proceedings of 39th International Conference on Offshore Mechanics and Arctic Engineering
,
Fort Lauderdale, FL
,
Aug. 3–7
, p.
V004T04A007
.
15.
Sidarta
,
D. E.
,
Osullivan
,
J.
, and
Lim
,
H.
,
2018
, “
Damage Detection of Offshore Platform Mooring Line Using Artificial Neural Network
,”
Proceedings of 37th International Conference on Offshore Mechanics and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, p.
V001T01A058
.
16.
Mao
,
X.
,
Joshi
,
V.
,
Miyanawala
,
T. P.
, and
Jaiman
,
R. K.
,
2018
, “
Data-Driven Computing With Convolutional Neural Networks for Two-Phase Flows: Application to Wave-Structure Interaction
,”
Proceedings of 37th International Conference on Offshore Mechanics and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, p.
V002T08A005
.
17.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential Equations
,” arXiv: 1711.10561.
18.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
, pp.
932
955
.
19.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
20.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
, 1st ed.,
The MIT Press
,
Cambridge, MA
.
21.
Waibel
,
A.
,
Hanazawa
,
T.
,
Hinton
,
G.
,
Shikano
,
K.
, and
Lang
,
K. G.
,
1989
, “
Phoneme Recognition Using Time-Delay Neural Networks
,”
IEEE Trans. Acoust. Speech Signal Process.
,
37
(
3
), pp.
328
339
.
22.
Le Cun
,
Y.
,
Jackel
,
L. D.
,
Boser
,
B.
,
Denker
,
J. S.
,
Graf
,
H. P.
,
Guyin
,
I.
,
Henderson
,
D.
,
Howard
,
R. E.
, and
Hubbard
,
W.
,
1989
, “
Handwritten Digit Recognition: Applications of Neural Network Chips and Automatic Learning
,”
IEEE Commun. Mag.
,
27
(
11
), pp.
41
46
.
23.
Murphy
,
K. P.
,
2012
,
Machine Learning—A Probabilistic Perspective
,
The MIT Press
,
Cambridge, MA
.
24.
Jordan
,
M. I.
,
1986
, “
Attractor Dynamics and Parallelism in a Connectionist Sequential Machine
,”
8th Annual Conference of Cognitive Science Society
,
Aug. 15–17
, pp.
531
546
.
25.
Elman
,
J. L.
,
1990
, “
Finding Structure in Time
,”
Proceedings of 12th Annual Conference of Cognitive Science Society
,
Berkeley, CA
,
April
, pp.
179
211
.
26.
Principia & IFP Energie Nouvelles
,
2011
, “
DeeplinesTM 4.5—Theory Manual
,”
La Ciota, France
.
27.
Naess
,
A.
, and
Moan
,
T.
,
2013
,
Stochastic Dynamics of Marine Structures
,
Cambridge University Press
,
Cambridge, UK
.
28.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
Proceedings of 3rd International Conference for Learning Representations
,
San Diego, CA
,
May 7–9
.
29.
Ruder
,
S.
,
2016
, “
An Overview of Gradient Descent Optimization Algorithms
,” arXiv: 1609.04747v2.
30.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G.S.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
, and
Ghemawat
,
S.
,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,” arXiv: 1603.04467.
31.
Qiao
,
D.
,
Li
,
P.
,
Ma
,
G.
,
Qi
,
X.
,
Yan
,
J.
,
Ning
,
D.
, and
Li
,
B.
,
2021
, “
Real-Time Prediction of Dynamic Mooring Lines Responses With LSTM Neural Network Model
,”
Ocean Eng.
,
219
, Article ID 108368.
32.
Burkov
,
A.
,
2020
,
Machine Learning Engineering
,
True Positive Inc.
,
Quebec City, Canada
.
33.
Bahdanau
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2015
, “
Neural Machine Translation by Jointly Learning to Align and Translate
,” arXiv preprint arXiv:1409.0473v7.
You do not currently have access to this content.