Abstract

Additive manufacturing (AM) is a transformational digital manufacturing technology featured with rapidity, customizability, precision, and economy, which is fundamentally altering the way components are designed and manufactured. AM enables the freedom of design, and makes full use of complexity of geometry which “comes for free”. Applying AM technology to nuclear industry can yield advanced reactor designs with function and structure matched for the best thermal, fluidic and mechanical performance. In this work, an AM-informed reactor core design with silicon carbide (SiC) matrix and tri-structural isotropic (TRISO) particle fuel is proposed and analyzed. The core is an integrated 3D-printed SiC bulk with helical cruciform coolant channels, and the UO2-bearing TRISO fuel particles are dispersed in the bulk. A multiphysics analysis framework for irregular geometry is developed to analyze and further optimize the reactor design. The TRISO particle positions are generated with discrete element method (DEM). The Reactor Monte Carlo code (RMC) and the commercial computational fluid dynamics (CFD) software star-ccm+ are used for the neutronic and thermal-fluidic analyses, respectively. RMC simulates the neutron transport to predict the effective multiplication factor and power distribution. star-ccm+ calculates the flow and heat transfer in coolant channels and heat conduction in solid matrix with the power distribution as the heat source. Preliminary results show that the power peaking factor FQ decreases below 1.65, the heat transfer area increases by 30.3% and the fuel peaking temperature decreases by 25 K. The optimized AM-informed design enjoys better neutronic and thermal-fluidic performance than those with regular geometry.

References

1.
Du Plessis
,
A.
,
Razavi
,
S. M. J.
,
Benedetti
,
M.
,
Murchio
,
S.
,
Leary
,
M.
,
Watson
,
M.
,
Bhate
,
D.
, and
Berto
,
F.
,
2022
, “
Properties and Applications of Additively Manufactured Metallic Cellular Materials: A Review
,”
Prog. Mater. Sci.
,
125
, p.
100918
.10.1016/j.pmatsci.2021.100918
2.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.10.1007/s11665-014-0958-z
3.
Betzler
,
B. R.
,
Ade
,
B. J.
,
Wysocki
,
A. J.
,
Jain
,
P. K.
,
Chesser
,
P. C.
,
Greenwood
,
M. S.
, and
Terrani
,
K. A.
,
2020
, “
Transformational Challenge Reactor Preconceptual Core Design Studies
,”
Nucl. Eng. Des.
,
367
, p.
110781
.10.1016/j.nucengdes.2020.110781
4.
Sarvankar
,
S. G.
, and
Yewale
,
S. N.
,
2019
, “
Additive Manufacturing in Automobile Industry
,”
Int. J. Res.Aeronaut. Mech. Eng.
,
7
(
4
), pp.
1
10
.https://www.academia.edu/download/58802626/V7i401.pdf
5.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
Du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.10.1016/j.matdes.2021.110008
6.
Singh
,
S.
,
Ramakrishna
,
S.
, and
Singh
,
R.
,
2017
, “
Material Issues in Additive Manufacturing: A Review
,”
J. Manuf. Processes
,
25
, pp.
185
200
.10.1016/j.jmapro.2016.11.006
7.
Pajonk
,
A.
,
Prieto
,
A.
,
Blum
,
U.
, and
Knaack
,
U.
,
2022
, “
Multi-Material Additive Manufacturing in Architecture and Construction: A Review
,”
J. Build. Eng.
,
45
, p.
103603
.10.1016/j.jobe.2021.103603
8.
Betzler
,
B. R.
,
Ade
,
B. J.
,
Jain
,
P. K.
,
Wysocki
,
A. J.
,
Chesser
,
P. C.
,
Kirkland
,
W. M.
,
Cetiner
,
M. S.
, et al.,
2022
, “
Conceptual Design of the Transformational Challenge Reactor
,”
Nucl. Sci. Eng.
,
196
(
12
), pp.
1399
1424
.10.1080/00295639.2021.1996196
9.
Wang
,
K.
,
Li
,
Z.
,
She
,
D.
,
Liang
,
J.
,
Xu
,
Q.
,
Qiu
,
Y.
,
Yu
,
J.
,
Sun
,
J.
,
Fan
,
X.
, and
Yu
,
G.
,
2015
, “
RMC–a Monte Carlo Code for Reactor Core Analysis
,”
Ann. Nucl. Energy
,
82
, pp.
121
129
.10.1016/j.anucene.2014.08.048
10.
Wang
,
K.
,
Liu
,
S.
,
Li
,
Z.
,
Wang
,
G.
,
Liang
,
J.
,
Yang
,
F.
,
Chen
,
Z.
, et al.,
2017
, “
Analysis of BEAVRS Two-Cycle Benchmark Using RMC Based on Full Core Detailed Model
,”
Prog. Nucl. Energy
,
98
, pp.
301
312
.10.1016/j.pnucene.2017.04.009
11.
Pan
,
Q.
,
An
,
N.
,
Zhang
,
T.
,
Liu
,
X.
,
Cai
,
Y.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Single-Step Monte Carlo Criticality Algorithm
,”
Comput. Phys. Commun.
,
279
, p.
108439
.10.1016/j.cpc.2022.108439
12.
Liu
,
S.
,
Liang
,
J.
,
Wu
,
Q.
,
Guo
,
J.
,
Huang
,
S.
,
Tang
,
X.
,
Li
,
Z.
, and
Wang
,
K.
,
2017
, “
BEAVRS Full Core Burnup Calculation in Hot Full Power Condition by RMC Code
,”
Ann. Nucl. Energy
,
101
, pp.
434
446
.10.1016/j.anucene.2016.11.033
13.
Ma
,
Y.
,
Liu
,
S.
,
Luo
,
Z.
,
Huang
,
S.
,
Li
,
K.
,
Wang
,
K.
,
Yu
,
G.
, and
Yu
,
H.
,
2019
, “
RMC/CTF Multiphysics Solutions to VERA Core Physics Benchmark Problem 9
,”
Ann. Nucl. Energy
,
133
, pp.
837
852
.10.1016/j.anucene.2019.07.033
14.
Ma
,
Y.
,
Han
,
W.
,
Xie
,
B.
,
Yu
,
H.
,
Liu
,
M.
,
He
,
X.
,
Huang
,
S.
, et al.,
2021
, “
Coupled Neutronic, Thermal-Mechanical and Heat Pipe Analysis of a Heat Pipe Cooled Reactor
,”
Nucl. Eng. Des.
,
384
, p.
111473
.10.1016/j.nucengdes.2021.111473
15.
Ma
,
Y.
,
Liu
,
M.
,
Xie
,
B.
,
Han
,
W.
,
Yu
,
H.
,
Huang
,
S.
,
Chai
,
X.
, et al.,
2021
, “
Neutronic and Thermal-Mechanical Coupling Analyses in a Solid-State Reactor Using Monte Carlo and Finite Element Methods
,”
Ann. Nucl. Energy
,
151
, p.
107923
.10.1016/j.anucene.2020.107923
16.
Liu
,
S.
,
Li
,
Z.
,
Wang
,
K.
,
Cheng
,
Q.
, and
She
,
D.
,
2018
, “
Random Geometry Capability in RMC Code for Explicit Analysis of Polytype Particle/Pebble and Applications to HTR-10 Benchmark
,”
Ann. Nucl. Energy
,
111
, pp.
41
49
.10.1016/j.anucene.2017.08.063
17.
Wu
,
Y.
,
Liu
,
S.
,
Li
,
M.
,
Xiao
,
P.
,
Wang
,
L.
, and
Chen
,
Y.
,
2021
, “
Monte Carlo Simulation of Dispersed Coated Particles in Accident Tolerant Fuel for Innovative Nuclear Reactors
,”
Int. J. Energy Res.
,
45
(
8
), pp.
12110
12123
.10.1002/er.6127
18.
Siemens, Inc
.,
2019
. “STAR-CCM+ User Guide Version 13.04,” Siemens, Inc.
19.
DEM-Solutions
,
2010
. “EDEM User Manual,” DEM-Solutions.
20.
Wu
,
Z.
, and
Zhang
,
Z.
,
2004
, “
The Advanced Nuclear Energy Systems and High Temperature Gas-Cooled Reactor
,”
Tsinghua University Press
,
Beijing, China
, p.
294
.
21.
Shirvan
,
K.
, and
Kazimi
,
M. S.
,
2012
, “
Nuclear Design of Helical Cruciform Fuel Rods
,”
PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education
,
American Nuclear Society
,
Knoxville, TN, LaGrange Park, IL
, Apr. 15–20, p.
CD-ROM15
.
You do not currently have access to this content.