Abstract

Protective coatings were proposed as near-term concepts to enhance the accident tolerance of nuclear fuel claddings; it is expected to improve corrosion resistance in severe events, and enhance cladding performance during normal operation, without introducing major design changes. Various aspects such as corrosion resistance, thermal and neutronic performances are being evaluated. However, the fact that inner uncoated side of fuel cladding may expose to the oxidizing environment under some circumstances is still a concern. Thus, a complementary inner-side coating was proposed. Metallic chromium is extensively studied as a potential coating material, and showed promising performance. Neutronic penalties are expected if chromium used as protective coating. In this study, reactor's inherent safety feedback, when chromium coatings used for fuel claddings inner-side protection, is evaluated and compared with the case of using external coatings. These parameters have not been studied before. Five different coating thicknesses were used in this evaluation. Results showed that inner side coatings will induce less negative moderator temperature feed backs, while feedback to changes in fuel temperature will be more negative than the reference uncoated case. Boron coefficient was found to be less negative compared to the reference. It was found that each coating thickness will induce unique changes in neutrons flux; generally, there will be reduction in thermal portion of neutron flux, which will be less for the case of inner-side coatings, when compared to external coatings. The magnitude of feedback varies from thickness to another. Reactivity feedbacks also calculated for some cases where inner and external coatings used simultaneously, results showed similar behavior, with the magnitude varying from a combination to another. The presence of chromium coatings will introduce some changes in reactor's neutron flux; nevertheless, the reactor will still keep its inherent negative feedback to changes in different operation parameters studied.

References

1.
Alrwashdeh
,
M.
, and
Alameri
,
S. A.
,
2021
, “
Preliminary Neutronic Analysis of Alternative Cladding Materials for APR-1400 Fuel Assembly
,”
Nucl. Eng. Des.
,
384
, p.
111486
.10.1016/j.nucengdes.2021.111486
2.
IAEA
,
2014
, “
Accident Tolerant Fuel Concepts for Light Water Reactors, Proceeding of a Technical Meeting Held at Oak Ridge National Laboratories, IAEA TECDOC Series, United States
,” IAEA, Vienna, Austria, Report No. IAEA-TECDOC-1797.
3.
Bischoff
,
J.
,
Delafoy
,
C.
,
Vauglin
,
C.
,
Barberis
,
P.
,
Roubeyrie
,
C.
,
Perche
,
D.
,
Duthoo
,
D.
,
Schuster
,
F.
,
Brachet
,
J.-C.
,
Schweitzer
,
E. W.
, and
Nimishakavi
,
K.
,
2018
, “
AREVA NP's Enhanced Accident-Tolerant Fuel Developments: Focus on Cr-Coated M5 Cladding
,”
Nucl. Eng. Technol.
,
50
(
2
), pp.
223
228
.10.1016/j.net.2017.12.004
4.
Sevecek
,
M.
, and
Valach
,
M.
,
2016
, “
Evaluation Metrics Applied to Accident Tolerant Fuel Cladding Concepts for VVER Reactors
,”
Acta Polytech. CTU Proc.
,
4
, p.
89
.10.14311/AP.2016.4.0089
5.
Ott
,
L. J.
,
Robb
,
K. R.
, and
Wang
,
D.
,
2014
, “
Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance During Normal Operation and Under DB and BDB Accident Conditions
,”
J. Nucl. Mater.
,
448
(
1–3
), pp.
520
533
.10.1016/j.jnucmat.2013.09.052
6.
Kashkarov
,
E.
,
Afornu
,
B.
,
Sidelev
,
D.
,
Krinitcyn
,
M.
,
Gouws
,
V.
, and
Lider
,
A.
,
2021
, “
Recent Advances in Protective Coatings for Accident Tolerant Zr-Based Fuel Claddings
,”
Coatings
,
11
(
5
), pp.
557
31
.10.3390/coatings11050557
7.
Abe
,
A.
,
Carluccio
,
T.
,
Piovezan
,
P.
,
Giovedi
,
C.
, and
Martins
,
R.
,
2015
, “
Preliminary Neutronic Assessment for ATF (Accident Tolerant Fuel) Based on Iron Alloy
,”
International Nuclear Atlantic Conference (INAC 2015)
, Sao Paulo, Brazil, Oct. 4–9, Report No. INIS-BR--15652.
8.
Chen
,
Q. S.
,
Liu
,
C. H.
,
Zhang
,
R. Q.
,
Yang
,
H. Y.
,
Wei
,
T. G.
,
Wang
,
Y.
,
Li
,
Z.
,
He
,
L. X.
,
Wang
,
J.
,
Wang
,
L.
,
Long
,
J. P.
, and
Chang
,
H.
,
2020
, “
Microstructure and High-Temperature Steam Oxidation Properties of Thick Cr Coatings Prepared by Magnetron Sputtering for Accident Tolerant Fuel Claddings: The Role of Bias in the Deposition Process
,”
Corros. Sci.
,
165
, p.
108378
.10.1016/j.corsci.2019.108378
9.
Lustman
,
B.
,
1979
, “
Zirconium Technology—Twenty Years of Evolution
,”
Zirconium in the Nuclear Industry Symposia
, Philadelphia, PA,
ASTM
, pp.
5
18
.
10.
Yang
,
J.
,
Steinbrück
,
M.
,
Tang
,
C.
,
Große
,
M.
,
Liu
,
J.
,
Zhang
,
J.
,
Yun
,
D.
, and
Wang
,
S.
,
2022
, “
Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding
,”
J. Alloys Compd.
,
895
(
1
), p.
162450
.10.1016/j.jallcom.2021.162450
11.
Terrani
,
K. A.
,
2018
, “
Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges
,”
J. Nucl. Mater.
,
501
, pp.
13
30
.10.1016/j.jnucmat.2017.12.043
12.
Powers
,
D. A.
, and
Meyer
,
R. O.
,
1980
, “
Cladding Swelling and Rupture Models for LOCA Analysis
,” INIS, Vienna, Austria, Report No. NUREG-0630.
13.
Nuclear Energy Agency
,
2018
, “
State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels
,” Nuclear Energy Agency of the OECD (NEA), Paris, France, Report No. 7317.
14.
Michau
,
A.
,
Maury
,
F.
, and
Maury
,
B.
,
2017
, “
Inner-Side Coatings for Advanced Fuel Claddings Processed by DLI-MOCVD
,”
Proceedings of the Water Reactor Fuel Performance Meeting
, Jeju Island, South Korea, Sept. 10–14.https://www.researchgate.net/publication/320056858_Innerside_coatings_for_advanced_fuel_claddings_processed_by_DLIMOCVD
15.
Addou
,
F.
,
Michau
,
A.
,
Maskrot
,
H.
,
Gazal
,
Y.
,
Maury
,
F.
,
Duguet
,
T.
,
Monsifrot
,
E.
, and
Schuster
,
F.
,
2020
, “
Two-Sided Protection for Zirconium-Based Nuclear Fuel Cladding
,”
Proceedings of International Nuclear Fuel Cycle Conference TOP FUEL 2019
, Seattle, WA, Sept. 22–27, pp.
115
121
.https://www.researchgate.net/publication/339018069_Two-sided_protection_for_zirconiumbased_nuclear_fuel_cladding
16.
Michau
,
E.
,
Maury
,
A.
,
Schuster
,
F.
,
Boichot
,
F.
,
Pons
,
R.
, and
Monsifrot
,
M.
,
2017
, “
Chromium Carbide Growth at Low Temperature by a Highly Efficient DLI-MOCVD Process in Effluent Recycling Mode
,”
Surf. Coat. Technol.
,
332
, pp.
96
104
.10.1016/j.surfcoat.2017.06.077
17.
Michau
,
M.
,
Maury
,
A.
,
Schuster
,
F.
,
Lomello
,
F.
,
Brachet
,
F.
,
Rouesne
,
J. C.
,
Le Saux
,
E.
,
Boichot
,
M.
, and
Pons
,
R.
,
2018
, “
High-Temperature Oxidation Resistance of Chromium-Based Coatings Deposited by DLI-MOCVD for Enhanced Protection of the Inner Surface of Long Tubes
,”
Surf. Coat. Technol.
,
349
, pp.
1048
1057
.10.1016/j.surfcoat.2018.05.088
18.
Michau
,
M.
,
Maury
,
A.
,
Schuster
,
F.
,
Nuta
,
F.
,
Gazal
,
I.
,
Boichot
,
Y.
, and
Pons
,
R.
,
2018
, “
Chromium Carbide Growth by Direct Liquid Injection Chemical Vapor Deposition in Long and Narrow Tubes, Experiments, Modeling and Simulation
,”
Coatings
,
8
(
6
), p.
220
.10.3390/coatings8060220
19.
Brachet
,
J. C.
,
Urvoy
,
S.
,
Rouesne
,
E.
,
Nony
,
G.
,
Dumerval
,
M.
,
Saux
,
M. L.
,
Ott
,
F.
,
Michau
,
A.
,
Schuster
,
F.
, and
Maury
,
F.
,
2021
, “
DLI-MOCVD CrxCy Coating to Prevent Zr-Based Cladding From Inner Oxidation and Secondary Hydriding Upon LOCA Conditions
,”
J. Nucl. Mater.
,
550
, p.
152953
.10.1016/j.jnucmat.2021.152953
20.
Pelowitz
,
D. B.
,
2011
, “
MCNPX User's Manual
,” Los Alamos National Laboratory, Los Alamos, NM.
21.
IAEA
,
2011
, “Status Report 107 – VVER-1200 (V-392M) (VVER-1200 (V-392M)),”
IAEA
, Vienna, Austria, accessed July 22, 2022, https://aris.iaea.org/PDF/VVER-1200(V-392M).pdf
22.
Schwarz
,
A. L.
,
Schwarz
,
R. A.
, and
Carter
,
L. L.
,
2011
, “
MCNP/MCNPX Visual Editor Computer Code Manual
,” Schwarz Software & Consulting, LLC.
23.
Khlifa
,
R. H.
,
Nikitenkov
,
N. N.
, and
Kudiiarov
,
V. N.
,
2021
, “
On the Use of Chromium Coating for Inner-Side Fuel Cladding Protection: Thickness Identification Based on Fission Fragments Implantation and Damage Profile
,”
Coatings
,
11
(
6
), p.
710
.10.3390/coatings11060710
24.
IAEA
,
2008
,
Thermophysical Properties of Materials For Nuclear Engineering: A Tutorial Collection of Data
,
IAEA
, Vienna, Austria, pp.
1
23
.
25.
Hafez
,
N.
,
Shahbunder
,
H.
,
Amin
,
E.
,
Elfiki
,
S. A.
, and
Abdel-Latif
,
A.
,
2021
, “
Study on Criticality and Reactivity Coefficients of VVER-1200 Reactor
,”
Prog. Nucl. Energy
,
131
, p.
103594
.10.1016/j.pnucene.2020.103594
26.
Lamarsh
,
A. J.
, and
Baratta
,
J. R.
,
2001
,
Introduction to Nuclear Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
.
27.
Fejt
,
F.
,
Sevecek
,
M.
,
Frybort
,
J.
, and
Novak
,
O.
,
2019
, “
Study on Neutronics of VVER-1200 With Accident Tolerant Fuel Cladding
,”
Ann. Nucl. Energy
,
124
, pp.
579
591
.10.1016/j.anucene.2018.10.040
You do not currently have access to this content.