Abstract

Compact neutronic shields for mobile nuclear reactors or accelerator-based neutron beams are known to be optimized multilayered composites. This paper is a simplified short inroad to the complex problem of optimizing the design of such shields when they attenuate a neutron beam to extremise certain quality criteria, in plane geometry, subject to equality and inequality constraints. In the equality constraints, the interfacial polychromatic neutron fluxes are solutions to course-mesh finite difference holonomic state equations. The set of these interfacial fluxes act as state variables, while the set of layer thicknesses, or their poisoning (by added neutron absorbers) concentrations are decision variables. The entire procedure is then demonstrated to be reducible to standard Kuhn-Tucker semilinear programing that may also lead robustly to an optimal sequence for these layers.

References

1.
Alberton
,
R. D.
, and
Welton
,
T. A.
,
1950
,
A Simplified Theory of Neutron Attenuation and its Application to Reactor Shield Design
, WAPD-15. Technical Report, U.S. Department of Energy, OSTI.GOV, https://www.osti.gov/servlets/purl/4359976/
2.
Agresta
,
J.
,
Slater
,
M.
, and
Soodak
,
H.
,
1959
,
Validity of Diffusion Theory for Shielding Analysis, NDA-2130-2
. Project V, Contract AT(30-1)-2363, OTS.
3.
Broder
,
D. L.
,
Popokov
,
K. K.
, and
Ribanov
,
S. M.
,
1967
,
Small-Scale Reactor Shielding
,
Atomizdat
,
Moscow
(in Russian).
4.
Wood
,
J.
,
1982
,
Computational Methods in Reactor Shielding
,
Pergamon Press
,
Oxford
, UK
.
5.
Avery
,
A. F.
,
Bendall
,
D. E.
,
Butler
,
J.
, and
Spinney
,
K. T.
,
1960
,
Methods of Calculation for Use in the Design of Shields for Power Reactors, AERE-R-3216. Technical Report, United Kingdom Atomic Energy Authority. Research Group.
Atomic Energy Research Establishment
,
Harwell, UK
.
6.
Deutsch
,
R. W.
,
1962
, “
Neutron Flux Distributions in Iron-Water Shields
,”
Trans. Am. Nucl. Soc.
,
5
(
1
), pp. 217–218.
7.
Tyufyakov
,
N. D.
, and
Shtan
,
A. S.
,
1979
,
Principles of Neutron Radiography
,
Amerind Publishing Co
,
New Delhi
.
8.
Cohen
,
L.
, and
Awschalom
,
M.
,
1982
, “
Fast Neutron Radiation Therapy
,”
Annu. Rev. Biophys. Bioeng.
,
11
(
1
), pp.
359
390
.10.1146/annurev.bb.11.060182.002043
9.
Haidar
,
N. H. S.
,
2019
, “
Optimization of Two Opposing Neutron Beams Parameters in Dynamical (B/Gd) Neutron Cancer Therapy
,”
Nucl. Energy Technol.
,
5
(
1
), pp.
1
7
.10.3897/nucet.5.32239
10.
Haidar
,
N. H. S.
,
2020
, “
A Resonated and Synchrophased Three Beams Neutron Cancer Therapy Installation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
3
), p. 034501.
11.
Haidar
,
N. H. S.
,
2020
, “
Advantage of a Dynamical (B/Gd) Neutron Beam Cancer Therapy Over a Stationary Therapy
,”
Nucl. Phys. At. Energy
,
21
(
1
), pp.
101
105
.10.15407/jnpae2020.01.101
12.
Jasani
,
B.
,
1987
,
Space Weapons & International Security
,
Oxford University Press
,
Oxford
, p.
384
.
13.
Nakashima
,
H.
,
Kanda
,
Y.
, and
Ido
,
S.
,
1985
, “
Neutronics Optimization Study for D-D Fusion Reactor Blanket
,”
J. Fusion Energy
,
4
(
6
), pp. 389–394.10.1007/BF01053361
14.
Piotrowski
,
T.
,
Tefelski
,
D. B.
,
Polariski
,
A.
, and
Skubalski
,
J.
,
2012
, “
Monte Carlo Simulations for Optimization of Neutron Shielding Concrete
,”
Central Eur. J. Eng.
,
2
(
2
), pp.
296
303
.
15.
Tunes
,
M. A.
,
de Oliveira
,
C. R. E.
, and
Schön
,
C. G.
,
2017
, “
Multi-Objective Optimization of Compact Pressurized Water Nuclear Reactor Computational Model for Biological Shielding Design Using Innovative Materials
,”
Nucl. Eng. Des.
,
313
(
1
), pp.
20
28
.
16.
Cai
,
Y.
,
Hu
,
H.
,
Pan
,
Z.
,
Sun
,
W.
, and
Yan
,
M.
,
2018
, “
Metaheuristic Optimization in Shielding Design for Neutrons and Gamma Rays Reducing Dose Equivalent as Much as Possible
,”
Ann. Nucl. Energy
,
120
, pp.
27
34
.10.1016/j.anucene.2018.05.038
17.
Li
,
X.
,
Cong
,
M.
,
Yang
,
G.
, and
Su
,
W.
,
2021
, “
Designing Neutron Shield Material for D-T Neutron Generator
,”
J. Phys. Conf. Ser.
,
1739
(
1
), p.
012012
.10.1088/1742-6596/1739/1/012012
18.
Haidar
,
N. H. S.
,
1988
, “
A Coordinate Transform Method for One-Speed Neutron Transport in Composite Slabs
,”
J. Phys. D: Appl. Phys.
,
21
(
11
), pp.
1543
1549
.10.1088/0022-3727/21/11/001
19.
Ben-Dor
,
G.
,
Dubinsky
,
A.
, and
Elperin
,
T.
,
2011
, “
Optimization of Multi-Layered Metallic Shield
,”
Nucl. Eng. Des.
,
241
(
6
), pp.
2020
2025
.10.1016/j.nucengdes.2011.01.046
20.
Beckurts
,
K. H.
, and
Wirtz
,
K.
,
1964
,
Neutron Physics
,
Springer-Verlag
,
Berlin
.
21.
Duderstadt
,
J. J.
, and
Hamilton
,
L. J.
,
1976
,
Nuclear-Reactor Analysis
,
Wiley
,
New York
.
22.
Henry
,
A. F.
,
1975
,
Nuclear-Reactor Analysis
,
The MIT Press
,
Cambridge, MA
.
23.
Hiebert
,
K. L.
,
1980
, “
Solving Systems of Linear Equations & Inequalities
,”
SIAM J. Numer. Anal.
,
17
(
3
), pp.
447
464
.10.1137/0717038
24.
Gauthier
,
J. B.
,
Desrosiers
,
J.
, and
Lübbecke
,
M. E.
,
2016
, “
Tools for Primal Degenerate Linear Programs: IPS, DGA, and PE
,”
EURO J. Transportation Logistics
,
5
(
2
), pp.
161
204
.10.1007/s13676-015-0077-5
25.
Greig
,
D. M.
,
1980
,
Optimisation
,
Longman
,
London
.
26.
French
,
M.
,
2018
,
Fundamentals of Optimization: Methods, Minimum Principles and Applications for Making Things Better
,
Springer-Verlag
,
Berlin
.
27.
Thukral
,
R.
,
2016
, “
A Newton-Type Method With Ninth-Order Convergence for Solving Nonlinear Equations
,”
J. Numer. Math. Stochastics
,
8
(
1
), pp.
9
16
.
28.
Fletcher
,
R.
,
1975
, “
An Ideal Penalty Function for Constrained Optimization
,”
IMA J. Appl. Math.
,
15
(
3
), pp.
319
342
.10.1093/imamat/15.3.319
29.
Lian
,
S.
, and
Han
,
J.
,
2013
, “
Smoothing Approximation to the Square-Order Exact Penalty Functions for Constrained Optimization
,”
J. Appl. Math.
,
2013
, pp.
1
7
.10.1155/2013/568316
You do not currently have access to this content.