Abstract

Quenching is an important phenomenon when the emergency core cooling system is put into operation during loss of coolant accident (LOCA) in a nuclear reactor. In this study, an experimental apparatus is designed and constructed with the purpose of conducting transient pool boiling experiments with quenching method for zirconium (Zr-4) cylindrical test samples. Three thermocouples are inserted in the test sample to investigate the effect of axial distance on the minimum film boiling temperature. The Zr-4 rodlet is heated up to a temperature well above the minimum film boiling temperature (up to 600 °C), and then plunged vertically in a quiescent pool of subcooled water. A data acquisition system is used to record the temperature history of the embedded thermocouples. Data reduction is performed by an inverse heat conduction code to calculate the surface temperature and corresponding surface heat flux. A visualization study is conducted to record the quench behavior of the test sample by using a high-speed camera. It is found that the minimum film boiling temperature decreases with the axial distance, while temperature at critical heat flux (CHF) is relatively insensitive to the axial distance. The film boiling heat transfer coefficient decreases with surface temperature, and seems to be independent of axial distance. The quench front is observed to originate from the bottom and move upward. It is found that the quench front velocity remains nearly constant in the lower region of the test sample, and significantly increases in the upper region.

References

1.
Kruse
,
C.
,
Anderson
,
T.
,
Wilson
,
C.
,
Zuhlke
,
C.
,
Alexander
,
D.
,
Gogos
,
G.
, and
Ndao
,
S.
,
2013
, “
Extraordinary Shifts of the Leidenfrost Temperature From Multiscale Micro/Nanostructured Surfaces
,”
Langmuir: ACS J. Surfaces Colloids
,
29
(
31
), pp.
9798
9806
.10.1021/la401936w
2.
Chowdhury
,
S. R.
, and
Winterton
,
R.
,
1985
, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1881
1889
.10.1016/0017-9310(85)90210-8
3.
Sinha
,
J.
,
2003
, “
Effects of Surface Roughness, Oxidation Level, and Liquid Subcooling on the Minimum Film Boiling Temperature
,”
Exp. Heat Transfer
,
16
(
1
), pp.
45
60
.10.1080/08916150390126478
4.
Kim
,
H.
,
Dewitt
,
G.
,
Mckrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
427
438
.10.1016/j.ijmultiphaseflow.2009.02.004
5.
Kim
,
H.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
, and
McKrell
,
T.
,
2010
, “
Nanoparticle Deposition Effects on the Minimum Heat Flux Point and Quench Front Speed During Quenching in Water-Based Alumina Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1542
1553
.10.1016/j.ijheatmasstransfer.2009.11.029
6.
Kang
,
J.-y.
,
Kim
,
S. H.
,
Jo
,
H.
,
Park
,
G.
,
Ahn
,
H. S.
,
Moriyama
,
K.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2016
, “
Film Boiling Heat Transfer on a Completely Wettable Surface With Atmospheric Saturated Distilled Water Quenching
,”
Int. J. Heat Mass Transfer
,
93
, pp.
67
74
.10.1016/j.ijheatmasstransfer.2015.09.049
7.
Kang
,
J. Y.
,
Tong
,
K. K.
,
Lee
,
G. C.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2018
, “
Quenching of Candidate Materials for Accident Tolerant Fuel-Cladding in LWRS
,”
Ann. Nucl. Energy
,
112
, pp.
794
807
.10.1016/j.anucene.2017.11.007
8.
Lee
,
C. Y.
, and
Kim
,
S.
,
2017
, “
Parametric Investigation on Transient Boiling Heat Transfer of Metal Rod Cooled Rapidly in Water Pool
,”
Nucl. Eng. Des.
,
313
, pp.
118
128
.10.1016/j.nucengdes.2016.12.005
9.
Seshadri
,
A.
, and
Shirvan
,
K.
,
2018
, “
Quenching Heat Transfer Analysis of Accident Tolerant Coated Fuel Cladding
,”
Nucl. Eng. Des.
,
338
, pp.
5
15
.10.1016/j.nucengdes.2018.07.020
10.
Yamada
,
T.
,
Toyoda
,
K.
,
Shigechi
,
T.
,
Momoki
,
S.
,
Kanemaru
,
K.
, and
Yamaguchi
,
T.
,
2010
, “
Film Boiling Heat Transfer Around a Vertical Finite‐Length Cylinder With a Convex Hemispherical Bottom
,”
Heat Transfer—Asian Res.
,
39
(
3
), pp.
166
177
.10.1002/htj.20289
11.
Ebrahim
,
S. A.
,
Shi
,
C.
,
Cheung
,
F. B.
, and
Bajorek
,
S. M.
,
2018
, “
Parametric Investigation of Film Boiling Heat Transfer on the Quenching of Vertical Rods in Water Pool
,”
Appl. Therm. Eng.
,
140
, pp.
139
146
.10.1016/j.applthermaleng.2018.05.021
12.
Li
,
J.-Q.
,
Mou
,
L.-W.
,
Zhang
,
J.-Y.
,
Zhang
,
Y.-H.
, and
Fan
,
L.-W.
,
2018
, “
Enhanced Pool Boiling Heat Transfer During Quenching of Water on Superhydrophilic Porous Surfaces: Effects of the Surface Wickability
,”
Int. J. Heat Mass Transfer
,
125
, pp.
494
505
.10.1016/j.ijheatmasstransfer.2018.04.099
13.
Yeom
,
H.
,
Jo
,
H.
,
Johnson
,
G.
,
Sridharan
,
K.
, and
Corradini
,
M.
,
2018
, “
Transient Pool Boiling Heat Transfer of Oxidized and Roughened Zircaloy-4 Surfaces During Water Quenching
,”
Int. J. Heat Mass Transfer
,
120
, pp.
435
446
.10.1016/j.ijheatmasstransfer.2017.12.060
14.
Lee
,
C. Y.
,
Chun
,
T. H.
, and
In
,
W. K.
,
2014
, “
Effect of Change in Surface Condition Induced by Oxidation on Transient Pool Boiling Heat Transfer of Vertical Stainless Steel and Copper Rodlets
,”
Int. J. Heat Mass Transfer
,
79
, pp.
397
407
.10.1016/j.ijheatmasstransfer.2014.08.030
15.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R. S.
, Jr.
,
1985
, “
Inverse Heat Conduction
,”
Ill-Posed Problems
,
A Wiley-Interscience Publication
,
New York
.
16.
Bromley
,
L. A.
,
LeRoy
,
N. R.
, and
Robbers
,
J. A.
,
1953
, “
Heat Transfer in Forced Convection Film Boiling
,”
Ind. Eng. Chem.
,
45
(
12
), pp.
2639
2646
.10.1021/ie50528a027
17.
Michiyoshi
,
I.
,
Takahashi
,
O.
, and
Kikuchi
,
Y.
,
1989
, “
Heat Transfer and the Low Limit of Film Boiling
,”
Exp. Therm. Fluid Sci.
,
2
(
3
), pp.
268
279
.10.1016/0894-1777(89)90016-2
18.
Sakurai
,
A.
,
Shiotsu
,
M.
, and
Hata
,
K.
,
1990
, “
A General Correlation for Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Subcooled Liquid: Part 1—A Theoretical Pool Film Boiling Heat Transfer Model Including Radiation Contributions and Its Analytical Solution
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
2
), pp.
430
440
.10.1115/1.2910396
19.
Filipovic
,
J.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1995
, “
Rewetting Temperatures and Velocity in a Quenching Experiment
,”
Exp. Heat Transfer
,
8
(
4
), pp.
257
270
.10.1080/08916159508946505
20.
Duffey
,
R.
, and
Porthouse
,
D.
,
1973
, “
The Physics of Rewetting in Water Reactor Emergency Core Cooling
,”
Nucl. Eng. Des.
,
25
(
3
), pp.
379
394
.10.1016/0029-5493(73)90033-2
You do not currently have access to this content.