Abstract

Thermal efficiency and safety of generation-IV nuclear-power-reactor concept supercritical water-cooled reactor (SCWR) are largely dependent on the coupled supercritical water (SCW) thermophysical properties and heat transfer performance in the supercritical region. This paper presents the numerical investigation of the heat-transfer characteristics of SCW flow in a 4-m long circular tube (ID=10 mm) based on computational fluid dynamics. Numerical model for SCW was established in this analysis and forced-convection heat transfer was studied at different operating conditions. The data were collected at pressure of about 24 MPa, inlet temperatures from 320 to 350 °C, mass flux from 1000 to 1500 kg/m2·s, and heat flux up to 1500 kW/m2. Results of numerical simulation predict the experimental data with reasonable accuracy. A dimensional analysis was conducted to derive the general form of an empirical supercritical water heat-transfer correlation. The decrease of turbulent viscosity due to the decrease of density leads to a lower turbulent diffusion and turbulent kinetic energy, which inhibits heat transfer. The increased wall temperature and localized heat transfer deterioration (HTD) would occur as the liquid in the core of the tube is isolated for the low-density fluid adheres to the near-wall region, which is characterized by low thermal capacity.

References

1.
Chen
,
L.
,
2017
,
Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid
,
Springer
,
New York
, p.
115
.
2.
Chen
,
L.
, and
Iwamoto
,
Y.
,
2017
,
Advanced Applications of Supercritical Fluids in Energy Systems
,
IGI Global
,
Pennsylvania, PA
, p.
682
.
3.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, p.
334
.
4.
Buongiorno
,
J.
, and
MacDonald
,
P.
,
2003
, “
Supercritical Water Reactor (SCWR), Progress Report for the FY-03 Generation-IV R&D Activities for the Development of the SCWR in the U.S.
,” INEEL, USA, Report No.
INEEL/Ext-03-03-01210
.https://www-pub.iaea.org/MTCD/publications/PDF/P1500_CD_Web/htm/pdf/topic5/5S06_H.%20Khartabil.pdf
5.
Kirillov
,
P.
,
Pometko
,
R.
,
Smirnov
,
A.
,
Grabezhnaia
,
V.
,
Pioro
,
I. L.
,
Duffey
,
R. B.
, and
Khartabil
,
H.
,
2005
, “
Experimental Study on Heat Transfer to Supercritical Water Flowing in 1-and 4-m-Long Vertical Tubes
,”
Proceedings of GLOBAL
,
Tsukuba, Japan
, Oct. 9–13, Paper No. 518.https://www.researchgate.net/publication/313553626_Experimental_study_on_heat_transfer_to_supercritical_water_flowing_in_vertical_tubes
6.
Pioro
,
I. L.
,
2016
,
Handbook of Generation IV Nuclear Reactors
,
Elsevier—Woodhead Publishing (WP)
,
Duxford, UK
, p.
940
.
7.
Chen
,
L.
,
Zhang
,
X. R.
,
Yamaguchi
,
H.
, and
Liu
,
Z.-S. S.
,
2010
, “
Effect of Heat Transfer on the Instabilities and Transitions of Supercritical CO2 Flow in a Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4101
4111
.10.1016/j.ijheatmasstransfer.2010.05.030
8.
Chen
,
L.
,
Zhang
,
X. R.
,
Okajima
,
J.
, and
Maruyama
,
S.
,
2013
, “
Thermal Relaxation and Critical Instability of Near-Critical Fluid Microchannel Flow
,”
Phys. Rev. E
,
87
(
4
), p.
043016
.10.1103/PhysRevE.87.043016
9.
Chen
,
L.
,
Chen
,
Y. M.
,
Sun
,
M. H.
, and
Zhang
,
X. R.
,
2015
, “
Investigation of Trans-Critical CO2 Horizontal Mini-Channel Flow With Multi-Peak Heat Transfer Behaviors
,”
Ann. Nucl. Energy
,
75
, pp.
559
569
.10.1016/j.anucene.2014.09.001
10.
Farah
,
A.
,
Harvel
,
G.
, and
Pioro
,
I. L.
,
2016
, “
Analysis of Computational Fluid Dynamics Code FLUENT Capabilities for Supercritical Water Heat-Transfer Applications in Vertical Bare Tubes
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
3
), p.
031016
.10.1115/1.4032642
11.
Bishop
,
A.
,
Sandberg
,
R.
, and
Tong
,
L.
,
1964
, Forced-Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures,
Westinghouse Electric Corp
.,
Pittsburgh, PA
, Report No.
WCAP-5449
.https://www.osti.gov/biblio/4595384-forced-convection-heat-transfer-water-near-critical-temperatures-supercritical-pressures
12.
Swenson
,
H.
,
Carver
,
J.
, and
Kakarala
,
C. D.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
477
483
.10.1115/1.3689139
13.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
14.
Gu
,
H. Y.
,
Zhao
,
M.
, and
Cheng
,
X.
,
2015
, “
Experimental Studies on Heat Transfer to Supercritical Water in Circular Tubes at High Heat Fluxes
,”
Exp. Therm. Fluid Sci.
,
65
, pp.
22
32
.10.1016/j.expthermflusci.2015.03.001
15.
Ran
,
T.
,
Yue
,
Z.
,
Yuezheng
,
M.
, and
Hui
,
L. L. S.
,
2018
, “
Experimental Study of Buoyancy Effect and Its Criteria for HeatTransfer of Supercritical R134a in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
127
, pp.
555
567
.10.1016/j.ijheatmasstransfer.2018.08.072
16.
Zhao
,
M.
, and
Gu
,
H. Y.
,
2020
, “
Experimental and Numerical Investigation on Heat Transfer of Supercritical Water Flowing Upward in 2 × 2 Rod Bundles
,”
Nucl. Eng. Des.
,
370
, p.
110903
.10.1016/j.nucengdes.2020.110903
17.
Seo
,
K. W.
,
Kim
,
M. H.
,
Anderson
,
M. H.
, and
Corradini
,
M. L.
,
2006
, “
Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes
,”
Nucl. Technol.
,
154
(
3
), pp.
335
349
.10.13182/NT06-A3738
18.
Palko
,
D.
, and
Anglart
,
H.
,
2008
, “
Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor
,”
Sci. Technol. Nucl. Installations
,
2008
, pp.
1
5
.10.1155/2008/405072
19.
Zhang
,
Z.
,
Zhao
,
C. R.
,
Yang
,
X. T.
,
Jiang
,
P. X.
,
Tu
,
J. Y.
, and
Jiang
,
S. Y.
,
2017
, “
Numerical Study of the Heat Transfer and Flow Stability of Water at Supercritical Pressures in a Vertical Tube
,”
Nucl. Eng. Des.
,
325
, pp.
1
11
.10.1016/j.nucengdes.2017.09.013
20.
Podila
,
K.
, and
Rao
,
Y.
,
2016
, “
CFD Modelling of Supercritical Water Flow and Heat Transfer in a 2 × 2 Fuel Rod Bundle
,”
Nucl. Eng. Des.
,
301
, pp.
279
289
.10.1016/j.nucengdes.2016.03.019
21.
Eze
,
C.
,
Wong
,
K. W.
,
Gschnaidtne
,
T.
,
Cai
,
J.
, and
Zhao
,
J.
,
2019
, “
Numerical Study of Effects of Vortex Generators on Heat Transfer Deterioration of Supercritical Water Upward Flow
,”
Int. J. Heat Mass Transfer
,
137
, pp.
489
505
.10.1016/j.ijheatmasstransfer.2019.03.145
22.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of the Tubular Type
, Vol.
2
,
University of California Publications in English
,
Berkeley, CA
, pp.
443
461
.
23.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.https://www.bibsonomy.org/bibtex/2e5f300b68e4939294c32226ddd6a5a71/thorade
24.
McAdams
,
W.
,
Addoms
,
J.
, and
Kennel
,
W.
,
1949
, “
Heat Transfer to Superheated Steam at High Pressures
,”
Trans. ASME
,
72
(
4
), pp.
421
428
.
25.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Connection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference
,
Shenzhen City, China
, Oct. 21–25, Paper No. 34084057.
26.
Mokry
,
S.
,
Pioro
,
I. L.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
27.
Chen
,
W.
, and
Fang
,
X.
,
2014
, “
A New Heat Transfer Correlation for Supercritical Water Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
78
, pp.
156
160
.10.1016/j.ijheatmasstransfer.2014.06.059
28.
Cheng
,
X.
, and
Schulenberg
,
T.
,
2001
, “
Heat Transfer at Supercritical Pressures–Literature Review and Application to a HPLWR, Forschungszentrum Karlsruhe, Technik Und Umwelt
,” Institute für Kernund Energietechnik, Germany, Report No. FZKA 6609.
29.
Yang
,
D.
,
Wu
,
Q.
,
Chen
,
L.
, and
Pioro
,
I. L.
,
2020
, “
Numerical Investigation on Heat Transfer to Supercritical Water Flowing Upward in a 4-m Long Bare Vertical Circular Tube
,”
28th International Conference on Nuclear Engineering (ICONE-2020)
,
Anaheim, CA
, Aug. 4–5, Paper No.16456.
30.
Sahu
,
S.
, and
Vaidya
,
A. M.
,
2020
, “
Numerical Study of Enhanced and Deteriorated Heat Transfer Phenomenon in Supercritical Pipe Flow
,”
Ann. Nucl. Energy
,
135
, p.
106966
.10.1016/j.anucene.2019.106966
31.
Zhang
,
W.
,
Li
,
H.
,
Zhang
,
Q.
,
Lei
,
X.
, and
Zhang
,
Q.
,
2018
, “
Experimental Investigation on Heat Transfer Deterioration of Supercritical Pressure Water in Vertically-Upward Internally Ribbed Tubes
,”
Int. J. Heat Mass Transfer
,
120
, pp.
930
943
.10.1016/j.ijheatmasstransfer.2017.12.097
32.
Zhang
,
G.
,
Zhang
,
H.
,
Gu
,
H.
,
Yang
,
Y.
, and
Cheng
,
X.
,
2012
, “
Experimental and Numerical Investigation of Turbulent Convective Heat Transfer Deterioration of Supercritical Water in Vertical Tube
,”
Nucl. Eng. Des.
,
248
, pp.
226
237
.10.1016/j.nucengdes.2012.03.026
33.
Li
,
Y.
,
Sun
,
F.
,
Sunden
,
B.
, and
Xie
,
G.
,
2019
, “
Turbulent Heat Transfer Characteristics of Supercritical n-Decane in a Vertical Tube Under Various Operating Pressures
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4652
4669
.10.1002/er.4602
34.
Licht
,
J.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2008
, “
Heat Transfer to Water at Supercritical Pressures in a Circular and Square Annular Flow Geometry
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
156
166
.10.1016/j.ijheatfluidflow.2007.09.007
35.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2012
, “
A New Analysis of Heat Transfer Deterioration on Basis of Turbulent Viscosity Variations of Supercritical Fluids
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122503
.10.1115/1.4007313
You do not currently have access to this content.