Abstract

This paper deals with the ablation of a solid by a high-temperature liquid jet. This phenomenon is a key issue to maintain the vessel integrity during the course of a nuclear reactor severe accident with melting of the core. Depending on the course of such an accident, high-temperature corium jets might impinge and ablate the vessel material leading to its potential failure. Since the Fukushima Daiichi accident, this severe accident scenario draws more concern in the nuclear safety policy and new mitigation measures are under study. As a designed safety feature of a future European sodium fast reactor (SFR), bearing the purpose of quickly draining the corium out of the core and protecting the reactor vessel against the attack of molten melt, the in-core corium is relocated via discharge tubes to an in-vessel core-catcher has been planned. The core-catcher design to withstand corium jet impingement demands the knowledge of very complex phenomena such as the dynamics of cavity formation and associated heat transfers. Even studied in the past, no complete data are available concerning the variation of jet parameters and solid structure materials. For a deep understanding of this phenomenon, new tests have been performed using both simulant and prototypical jet and core catcher materials. Part of these tests has been done at the University of Lorraine using hot liquid water impinging on transparent ice block allowing for the visualizations of the cavity formation. Other tests have been performed in Karlsruhe Institute of Technology (KIT) using liquid steel impinging on a steel block.

References

1.
Saito
, M.,
Sato
, K.,
Furutani
, A.,
Isozaki
, M.,
Imahori
, S., and
Hattori
, Y., 1990, “
Melting Attack of Solid Plates by a High Temperature Liquid Jet—Effect of Crust Formation
,”
Nucl. Eng. Des.
,
121
(
1
), pp.
11
23
.10.1016/0029-5493(90)90003-G
2.
Epstein
,
M.
,
Swedish
,
M. J.
,
Linehan
,
J. H.
,
Lambert
,
G. A.
,
Hauser
,
G. M.
, and
Stachyra
,
L. J.
, 1980, “
Simultaneous Melting and Freezing in the Impingement Region of a Liquid Jet
,”
AIChE J.
,
26
(
5
), pp.
743
751
.10.1002/aic.690260507
3.
Powers
, D. A., 1984, “
Erosion of Steel Structures by High-Temperature Melts
,”
Nucl. Sci. Eng.
,
88
(
3
), pp.
357
366
.10.13182/NSE84-A18589
4.
Sato
, K.,
Furutani
, A.,
Saito
, M.,
Isozaki
, M.,
Suganuma
, K., and
Imahori
, S., 1991, “
Melting Attack of Solid Plates by a High-Temperature Liquid Jet [II]—Erosion Behavior by a Molten Metal Jet
,”
Nucl. Eng. Des.
,
132
(
2
), pp.
171
186
.10.1016/0029-5493(91)90264-I
5.
Furutani
, A.,
Imahori
, S.,
Sato
, K., and
Saito
, M.,
1991
, “
Erosion Behavior of a Solid Plate by a Liquid Jet–Effect of Molten Layer
,”
Nucl. Eng. Des.
,
132
(
2
), pp.
153
169
.10.1016/0029-5493(91)90263-H
6.
Gilpin
, R. R.,
1973
, “
The Ablation of Ice by a Water Jet
,”
Trans. Can. Soc. Mech. Eng.
,
2
(
2
), pp.
91
96
.10.1139/tcsme-1973-0014
7.
Swedish
,
M. J.
,
Epstein
,
M.
,
Linehan
,
J. H.
,
Lambert
,
G. A.
,
Hauser
,
G. M.
, and
Stachyra
,
L. J.
,
1979
, “
Surface Ablation in the Impingement Region of a Liquid Jet
,”
AIChE J.
,
25
(
4
), pp.
630
638
.10.1002/aic.690250409
8.
Roberts
, L.,
1958
, “
On the Melting of a Semi-Infinite Body of Ice Placed in a Hot Stream of Air
,”
J. Fluid Mech.
,
4
(
5
), pp.
505
528
.10.1017/S002211205800063X
9.
Tong
, A. Y., 2003, “
A Numerical Study on the Hydrodynamics and Heat Transfer of a Circular Liquid Jet Impinging Onto a Substrate
,”
Numer. Heat Transfer, Part A: Appl.
,
44
(
1
), pp.
1
19
.10.1080/713838171
10.
Lecoanet
, A.,
2021
, “
Etude de l'ablation d'une paroi solide par un jet liquide
,” Ph.D. thesis,
Université de Lorraine
, Nancy, France.
11.
Bin
, A., 1988, “
Minimum Air Entrainment Velocity of Vertical Plunging Liquid Jets
,”
Chem. Eng. Sci.
,
43
(
2
), pp.
379
389
.10.1016/0009-2509(88)85051-6
12.
Alsmeyer
, H.,
Albrecht
, G.,
Meyer
, L.,
Häfner
, W.,
Journeau
, C.,
Fischer
, M.,
Hellman
, S.,
Eddi
, M.,
Allelein
, H.-J.,
Bürger
, M.,
Sehgal
, B. R.,
Koch
, M. K.,
Alkan
, Z.,
Petrov
, J. B.,
Gaune-Escard
, M.,
Altstadt
, E., and
Bandini
, G.,
2005
, “
Ex-Vessel Core Melt Stabilization Research (ECOSTAR
),”
Nucl. Eng. Des.
,
235
(
2–4
), pp.
271
284
.10.1016/j.nucengdes.2004.08.040
13.
Zhou
, J.,
Tsai
, H. L., and
Lehnhoff
, T.,
2006
, “
Investigation of Transport Phenomena and Defect Formation in Pulsed Laser Keyhole Welding of Zinc-Coated Steels
,”
J. Phys. D: Appl. Phys.
,
39
(
24
), pp.
5338
5355
.10.1088/0022-3727/39/24/036
14.
Harding
,
J. H.
,
Martin
,
D. G.
, and
Potter
,
P. E.
,
1989
, “
Thermophysical and Thermochemical Properties of Fast Reactor Materials (EUR–12402)
,”
Commission Eur. Communities (CEC)
.
15.
Sitharamayya
, S., and
Raju
, K. S.,
1969
, “
Heat Transfer Between an Axisymmetric Jet and a Plate Held Normal to the Flow
,”
Can. J. Chem. Eng.
,
47
(
4
), pp.
365
368
.10.1002/cjce.5450470412
16.
Lecoanet
, A.,
Payot
, F.,
Journeau
, C.,
Rimbert
, N., and
Gradeck
, M.,
2021
Study of the Ablation Consecutive to Jet Impingement on a Meltable Solid – Application to SFR Core-Catcher
,”
Nucl. Eng. Des.
,
377
, p.
111147
.10.1016/j.nucengdes.2021.111147
You do not currently have access to this content.