Abstract

The Euratom Horizon-2020 project European sodium fast reactor safety measures assessment and research tools (ESFR-SMART) aims to enhance the safety and performance of the European sodium-cooled fast reactor (ESFR) considering safety objectives envisaged for generation-IV reactors and the update of European and international safety frameworks, taking into account the Fukushima accident. Further, the project aims to support the development and validation of the computational tools for the situations to be considered at each defense-in-depth level in order to support the safety assessments using data produced in the project as well as selected legacy data. Within this activity, the focus is on the assessment and when needed further development of computer codes for the analysis of the sodium thermal-hydraulics phenomena in sodium cooled fast reactor (SFR) subassemblies under operational and accidental conditions including sodium boiling and transitional convection from forced to natural/mixed convection. In support of this activity, a review is performed for the sodium boiling models used in the codes participating in benchmark activities within the project. The objective of this paper is to summarize the result of the review, which encompasses both the phenomenological and mathematical models implemented in the codes. In particular, the review addresses the physical bases of sodium boiling models, the analytical models in connection with the numerical implementations in the codes, and the geometry representations ranging from a one-dimensional single channel and finite volume to full three-dimensional computational fluid dynamics (CFD) and porous media representations. Finally, the needs for further developments are discussed.

References

1.
Fiorini
,
G. L.
, and
Vasile
,
A.
,
2011
, “
European Commission—7th Framework Programme: The Collaborative Project on European Sodium Fast Reactor (CP ESFR)
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3461
3469
.10.1016/j.nucengdes.2011.01.052
2.
Mikityuk
,
K.
,
Girardi
,
E.
,
Krepel
,
J.
,
Bubelis
,
E.
,
Fridman
,
E.
,
Rineiski
,
A.
,
Girault
,
N.
,
Payot
,
F.
,
Buligins
,
L.
,
Gerbeth
,
G.
,
Chauvin
,
N.
,
Latge
,
C.
, and
Garnier
,
J.-C.
,
2017
, “
ESFR-SMART: New Horizon-2020 Project on SFR Safety
,”
Proceeding of IAEA FR2017
.
3.
U.S. Department of Energy Nuclear Energy Research,
2002
, “
Advisory Committee and the Generation IV International Forum
,” A Technology Roadmap for Generation IV Nuclear Energy Systems, OECD/NEA, Paris, France.
4.
Waltar
,
A. E.
, and
Reynolds
,
A. B.
,
1981
,
Fast Breeder Reactors
,
Pergamon Press
, Oxford, UK.
5.
Fauske
,
H.
,
1972
-1973, “
Nucleation of Liquid Sodium in Fast Reactors
,”
Reactor Technol.
,
15
(
4
), pp.
278
302
.
6.
Seiler
,
J. M.
,
Juhel
,
D.
, and
Dufour
,
P.
,
2010
, “
Sodium Boiling Stabilization in a Fast Breeder Subassembly During an Unprotected Loss of Flow Accident
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3329
3335
.10.1016/j.nucengdes.2010.07.001
7.
Kruessmann
,
R.
,
Ponomarev
,
A.
,
Pfrang
,
W.
,
Struwe
,
D.
,
Champigny
,
J.
,
Carluec
,
B.
,
Schmitt
,
D.
, and
Verwaerde
,
D.
,
2015
, “
Assessment of SFR Reactor Safety Issues: Part II: Analysis Results of ULOF Transients Imposed on a Variety of Different Innovative Core Designs With SAS-SFR
,”
Nucl. Eng. Des.
,
285
, pp.
263
283
.10.1016/j.nucengdes.2014.11.037
8.
Tentner
,
A. M.
,
Birgersson
,
G.
,
Cahalan
,
J. E.
,
Dunn
,
F. E.
,
Kalimullah
, and
Miles
,
K. J.
,
1987
, “
SAS4A a Computer Model for the Analysis of Hypothetical Core Disruptive Accidents in Liquid Metal Reactors
,”
Paper Submitted for Presentation at the 1987 Eastern Computer Simulation Conference
, Orlando, FL.
9.
Ishii
,
M.
, and
Hibiki
,
T.
,
2006
,
Thermo-Fluid Dynamics of Two-Phase Flows
,
Springer Science & Business Media
, Berlin, Germany.
10.
Bestion
,
D.
,
2012
, “
Applicability of Two-Phase CFD to Nuclear Reactor Thermalhydraulics and Elaboration of Best Practice Guidelines
,”
Nucl. Eng. Des.
,
253
, pp.
311
321
.10.1016/j.nucengdes.2011.08.068
11.
Mimouni
,
S.
,
Guingo
,
M.
,
Lavieville
,
J.
, and
Mérigoux
,
N.
,
2017
, “
Combined Evaluation of Bubble Dynamics, Polydispersion Model and Turbulence Modeling for Adiabatic Two-Phase Flow
,”
Nucl. Eng. Des.
,
321
, pp.
57
68
.10.1016/j.nucengdes.2017.03.041
12.
Mimouni
,
S.
,
Guingo
,
M.
, and
Lavieville
,
J.
,
2017
, “
Assessment of RANS at Low Prandtl Number and Simulation of Sodium Boiling Flows With a CMFD Code
,”
Nucl. Eng. Des.
,
312
, pp.
294
302
.10.1016/j.nucengdes.2016.07.006
13.
Mimouni
,
S.
,
Fleau
,
S.
, and
Vincent
,
S.
,
2017
, “
CFD Calculations of Flow Pattern Maps and LES of Multiphase Flows
,”
Nucl. Eng. Des.
,
321
, pp.
118
131
.10.1016/j.nucengdes.2016.12.009
14.
Chatelard
,
P.
,
Belon
,
S.
,
Bosland
,
L.
,
Carénini
,
L.
,
Coindreau
,
O.
,
Cousin
,
F.
,
Marchetto
,
C.
,
Nowack
,
H.
,
Piar
,
L.
, and
Chailan
,
L.
,
2016
, “
Main Modelling Features of the ASTEC V2.1 Major Version
,”
Ann. Nucl. Energy
,
93
, pp.
83
93
.10.1016/j.anucene.2015.12.026
15.
Gómez-García-Toraño
,
I.
, and
Laborde
,
L.
,
2019
, “
Validation of the Cesar Friction Models of the ASTECV21 Code Based on Moby Dick Experiments
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
2
), p.
020908
.10.1115/1.4042119
16.
Bestion
,
D.
, and
Geffraye
,
G.
,
2001
, “
The CATHARE Code
,”
Operational Practice of Nuclear Power Plants
,
Budapest University
,
Hungary
.
17.
Robert
,
M.
,
Farvacque
,
M.
,
Parent
,
M.
, and
Faydide
,
B.
,
2003
, “
CATHARE 2 V2.5: A Fully Validated CATHARE Version for Various Applications
,”
10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10)
, Seoul, South Korea, Oct. 5–11.
18.
Anderhuber
,
M.
,
Perez-Manes
,
J.
, and
Alpyet
,
N.
,
2017
, “
Validation of CATHARE-3 System Code for Sodium Two-Phase Flow Application: R&D Path and Simulation of Key-Tests From the SIENA Program
,”
Nureth-17
, Xi'an, China.
19.
Rehme
,
K.
,
1972
, “
Pressure Drop Performance of Rod Bundles in Hexagonal Arrangements
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2499
2517
.10.1016/0017-9310(72)90143-3
20.
Bestion
,
D.
,
1990
, “
The Physical Closure Laws in the CATHARE Code
,”
Nucl. Eng. Des.
,
124
(
3
), pp.
229
245
.10.1016/0029-5493(90)90294-8
21.
Skupinski
,
E.
,
Tortel
,
J.
, and
Vautrey
,
L.
,
1965
, “
Détermination Des Coefficients de Convection D'un Alliage Sodium-Potassium Dans un Tube Circulaire
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
937
951
.10.1016/0017-9310(65)90077-3
22.
Nuclear Regulatory Commission,
2013
, “
TRACE V5.0. Theory Manual. Field Equations, Solution Methods, and Physical Models
,” Office for Nuclear Regulatory Research, Washington, DC.
23.
Mikityuk
,
K.
,
Pelloni
,
S.
,
Coddington
,
P.
,
Bubelis
,
E.
, and
Chawla
,
R.
,
2005
, “
FAST: An Advanced Code System for Fast Reactor Transient Analysis
,”
Ann. Nucl. Energy
,
32
(
15
), pp.
1613
1631
.10.1016/j.anucene.2005.06.002
24.
Fink
,
J. K.
, and
Leibowitz
,
L.
,
1995
, “
Thermodynamic and Transport Properties of Sodium Liquid and Vapor
,” Argonne National Laboratory, IL, Report No. ANL/RE-95/2.
25.
Chenu
,
A.
,
2011
, “
Single- and Two-Phase Flow Modelling for Coupled Neutronics/Thermal-Hydraulics Transient Analysis of Advanced Sodium-Cooled Fast Reactors
,” EPFL thesis, p.
42
.
26.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equations Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1764207
27.
Mikityuk
,
K.
,
2009
, “
Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
680
687
.10.1016/j.nucengdes.2008.12.014
28.
Ninokata
,
H.
, and
Okano
,
T.
,
1990
, “
SABENA: Subassembly Boiling Evolution Numerical Analysis
,”
Nucl. Eng. Des.
,
120
(
2–3
), pp.
349
367
.10.1016/0029-5493(90)90386-C
You do not currently have access to this content.