Abstract

In nuclear power plant (NPP) projects, requirements engineering manages the sheer volume of requirements, typically characterized by descriptive and nonharmonized requirements. Large projects may have tens of thousands to hundreds of thousands of requirements to be managed and fulfilled. Two main issues impede requirements analysis: tortuous requirements to be interpreted; and humans' very limited ability to concentrate on a specific task. It has therefore been recognized that artificial intelligence (AI) algorithms have the potential to support designers' decision making in classifying and allocating NPP requirements into predefined classes. This paper presents our work on developing an AI-based requirements classifier utilizing natural language processing (NLP) and supervised machine-learning (ML). In addition, the paper presents the integration of the classifier with the requirements management system. The focus is on the classification of nuclear power industry-specific requirements utilizing deep-learning-based NLP. Three classifiers are compared, and the corresponding results are presented. The results include predetermined requirement classes, manually gathered and classified data, a comparison of three models and their classification accuracies, microservice system architecture, and integration of the established classifier with the requirements management system. As the performance of the requirements classifier and related system has been successfully demonstrated, future AI-specific development and studies are suggested to focus on atomizing multiclass requirements, combining similar requirements into one, checking requirements syntax, and utilizing unsupervised learning for clustering. Furthermore, new and advantageous requirement classes and hierarchies are suggested for development while improving current datasets both quantitatively and qualitatively.

References

1.
Saint-Dizier
,
P.
,
2018
, “
Mining Incoherent Requirements in Technical Specifications: Analysis and Implementation
,”
Data Knowl. Eng.
,
117
, pp.
290
306
.10.1016/j.datak.2018.05.006
2.
Walden
,
D. D.
,
Roedler
,
G. J.
,
Forsberg
,
K. J.
,
Hamelin
,
R. D.
, and
Shortell
,
T. M.
,
2015
,
INCOSE System Engineering Handbook
,
Wiley
,
Hoboken, NJ
.
3.
Bradbury
,
N. A.
,
2016
, “
Attention Span During Lectures: 8 Seconds, 10 Minutes, or More?
,”
AJP Adv. Physiol. Educ.
,
40
(
4
), pp.
509
513
.10.1152/advan.00109.2016
4.
Lamba
,
S.
,
Rawat
,
A.
,
Jacob
,
J.
,
Arya
,
M.
,
Rawat
,
J.
,
Chauhan
,
V.
, and
Panchal
,
S.
,
2014
, “
Impact of Teaching Time on Attention and Concentration
,”
IOSR J. Nurs. Health Sci.
,
3
(
4
), pp.
1
4
.10.9790/1959-03410104
5.
ISO/IEC/IEEE
,
2018
, “
Systems and Software Engineering—Life Cycle Processes—Requirements Engineering
,”
ISO
, Geneva,
Switzerland
, Standard No. ISO/IEC/IEEE 29148.
6.
NASA,
2016
,
NASA Systems Engineering Handbook
,
NASA
, Washington, DC.
7.
Myllynen
,
S.
,
2019
, “Utilization of Artificial Intelligence in the Analysis of Nuclear Power Plant Requirements,” Master's thesis,
Aalto University
, Espoo, Finland.
8.
Myllynen
,
S.
, and
Jitta
,
A.
,
2020
, “
Utilization of Artificial Intelligence in the Analysis of Nuclear Power Plant Requirements
,”
IYNC2020
Conference Proceedings
, Sydney, Australia, Mar. 8–13, pp.
154
157
.https://aaltodoc.aalto.fi/bitstream/handle/123456789/37913/master_Myllynen_Santeri_2019.pdf?sequence=1&isAllowed=y
9.
Jamshidi
,
P.
,
Pahl
,
C.
,
Mendonça
,
N. C.
,
Lewis
,
J.
, and
Tilkov
,
S.
,
2018
, “
Microservices: The Journey so Far and Challenges Ahead
,”
IEEE Software
,
35
(
3
), pp.
24
35
.10.1109/MS.2018.2141039
10.
Kowsari
,
K.
,
Meimandi
,
K. J.
,
Heidarysafa
,
M.
,
Mendu
,
S.
,
Barnes
,
L.
, and
Brown
,
D.
,
2019
, “
Text Classification Algorithms: A Survey
,”
Computing Research Repository (CoRR)
.
11.
Minaee
,
S.
,
Kalchbrenner
,
N.
,
Cambria
,
E.
,
Nikzad
,
N.
,
Chenaghlu
,
M.
, and
Gao
,
J.
,
2020
, “
Deep Learning Based Text Classification: A Comprehensive Review
,” Arxiv.
12.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.10.1109/5.726791
13.
Ng
,
T. H.
,
Goh
,
W. B.
, and
Low
,
K. L.
,
1997
, “
Feature Selection, Perceptron Learning, and a Usability Case Study for Text Categorization
,”
Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, Philadelphia, PA.10.1145/278459.258537
14.
Bengio
,
Y.
,
Ducharme
,
R.
,
Vincent
,
P.
, and
Jauvin
,
C.
,
2003
, “
A Neural Probabilistic Language Model
,”
J. Mach. Learn. Res.
,
3
(
1
), p.
1137
1155
.
15.
Grzegorczyk
,
K.
,
2018
, “
Vector Representations of Text Data in Deep Learning
,” Doctoral dissertation, AGH University of Science and Technology, Kraków, Poland.
16.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “Efficient Estimation of Word Representations in Vector Space,” Arxiv.
17.
Pennington
,
J.
,
Socher
,
R.
, and
Manning
,
C.
,
2014
, “
GloVe: Global Vectors for Word Representation
,”
EMNLP
, Doha, Qatar.
18.
Peters
,
M.
,
Neumann
,
M.
,
Iyyer
,
M.
,
Gardner
,
M.
,
Clark
,
C.
,
Lee
,
K.
, and
Zettlemoyer
,
L.
,
2018
, “
Deep Contextualized Word Representations
,”
arxiv.1802.05365
.https://arxiv.org/abs/1802.05365
19.
Akbik
,
A.
,
Blythe
,
D.
, and
Vollgraf
,
R.
,
2018
, “
Contextual String Embeddings for Sequence Labeling
,”
COLING
, Santa Fe, NM.
20.
Tamai
,
T.
, and
Anzai
,
T.
,
2019
, “
Quality Requirements Analysis With Machine Learning
,” Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (
ENASE 2018
), Funchal, Madeira, Portugal.10.5220/0006694502410248
21.
Saihan
,
L.
,
2019
, “Text Classification Based on Machine Learning Methods,” Master's thesis, Aalto University, Espoo, Finland, http://urn.fi/urn:nbn:fi:aalto-201908254968
22.
Jo
,
T.
,
2009
, “
Automatic text categorization using NTC
,”
2009 First International Conference on Networked Digital Technologies
, Ostrava, pp.
26
31.
10.1109/NDT.2009.5272193
23.
Dagan
,
I.
,
Karov
,
Y.
, and
Roth
,
D.
,
1997
, “
Mistake-Driven Learning in Text Categorization
,” arxiv:cmp-lg/9706006.
24.
Li
,
C. H.
, and
Park
,
S. C.
,
2006
, “
Text Categorization Based on Artificial Neural Networks
,”
13th International Conference Neural Information Processing (ICONIP) Proceedings
, Hong Kong, China, Oct. 3–6, pp.
302
311
.
25.
Li
,
C. H.
, and
Park
,
S. C.
,
2009
, “
An Efficient Document Classification Model Using an Improved Back Propagation Neural Network and Singular Value Decomposition
,”
Expert Syst. Appl.
,
36
(
2
), pp.
3208
3215
.10.1016/j.eswa.2008.01.014
26.
Tan
,
S.
,
2006
, “
An Effective Refinement Strategy for KNN Text Classifier
,”
Expert Syst. Appl.
,
30
(
2
), pp.
290
298
.10.1016/j.eswa.2005.07.019
27.
Kim
,
S. B.
,
Rim
,
H.-C.
,
Yook
,
D.
, and
Lim
,
H. S.
,
2002
, “
Effective Methods for Improving Naive Bayes Text Classifiers
,”
Seventh Pacific Rim International Conference on Artificial Intelligence (PRICAI)
, Tokyo, Japan, Aug. 18–22, pp.
414
423
.
28.
Wu
,
M.-C.
,
Lin
,
S.-Y.
, and
Lin
,
C.-H.
,
2006
, “
An Effective Application of Decision Tree to Stock Trading
,”
Expert Syst. Appl.
,
31
(
2
), pp.
270
274
.10.1016/j.eswa.2005.09.026
29.
Nakayama
,
M.
, and
Shimizu
,
Y.
,
2003
, “
Subject Categorization for Web Educational Resources Using MLP
,”
Proceedings of the European Symposium on Artificial Neural Networks (ESANN)
, Bruges, Belgium, Apr. 23–25, pp.
9
14
.
30.
Lewis
,
D. D.
,
1998
, “
Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval
,”
Proceedings of the Tenth European Conference on Machine Learning (ECML'98)
, Chemnitz, Germany, April 21–23, pp.
4
15
.
31.
Yang
,
Y.
, and
Chute
,
C. G.
,
1994
, “
An Example-Based Mapping Method for Text Categorization and Retrieval
,”
ACM Trans. Inf. Syst.
,
12
(
3
), pp.
252
277
.10.1145/183422.183424
32.
Joachims
,
T.
,
1998
, “
Text Categorization With Support Vector Machines: Learning With Many Relevant Features
,”
Proceedings of the Tenth European Conference on Machine Learning (ECML'98)
, Chemnitz, Germany, Apr. 21–23, pp.
137
142
.
33.
Tsochantaridis
,
I.
,
Hofmann
,
T.
,
Joachims
,
T.
, and
Altun
,
Y.
,
2004
, “
Support Vector Machine Learning for Interdependent and Structured Output Spaces
,”
Proceedings of the Twenty-First International Conference on Machine Learning (ICML '04)
, New York.
34.
Ko
,
Y.
, and
Seo
,
J.
,
2000
, “
Automatic Text Categorization by Unsupervised Learning
,”
Proceedings of the 18th Conference on Computational Linguistics (COLING '00)
, Vol.
1
, Saarbrucken, Germany, July 31–Aug. 4, pp.
453
459
.
35.
Sathya
,
R.
, and
Abraham
,
A.
,
2013
, “
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification
,”
Int. J. Adv. Res. Artif. Intell.
,
2
(
2
), pp.
34
38
.
36.
Usama, M., Qadir J.
,
Raza, A.
,
Arif, H.
,
Yau
,
K.-L. A
,
Elkhatib, Y.
,
Hussain, A.
,
and
Al-Fuqaha
,
A.
,
2017
, “
Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
,”
arxiv.1709.06599
.https://arxiv.org/abs/1709.06599
37.
Gliozzo
,
A.
,
Strapparava
,
C.
, and
Dagan
,
I.
,
2005
, “
Investigating Unsupervised Learning for Text Categorization Bootstrapping
,”
HLT '05: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing
, Vancouver, BC, Canada, Oct. 6–8, pp.
129
136
.
38.
Howard
,
J.
, and
Ruder
,
S.
,
2018
, “
Universal Language Model Fine-Tuning for Text Classification
,”
arxiv.1801.06146
. https://arxiv.org/pdf/1801.06146.pdf
39.
Merity
,
S.
,
Keskar
,
N. S.
, and
Socher
,
R.
,
2018
, “
Regularizing and Optimizing LSTM Language Models
,”
arxiv.1708.02182
.https://arxiv.org/abs/1708.02182
40.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A.
, and
Kaiser
,
Ł.
,
2017
, “
Attention is All You Need
,”
arxiv.1706.03762
.https://arxiv.org/abs/1706.03762
41.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
arxiv.1810.04805
.https://arxiv.org/abs/1810.04805
42.
Liu
,
Y.
,
Ott
,
M.
,
Goyal
,
N.
,
Du
,
J.
,
Joshi
,
M.
,
Chen
,
D.
,
Lewis
,
M.
,
Zettlemoyer
,
L.
, and
Stoyanov
,
V.
,
2019
, “
RoBERTa: A Robustly Optimized BERT Pretraining Approach
,”
arxiv.1907.11692
.https://arxiv.org/abs/1907.11692
43.
Sanh
,
V.
,
Debut
,
L.
,
Chaumond
,
J.
, and
Wolf
,
T.
,
2019
, “
DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter
,”
arxiv.1910.01108
.https://arxiv.org/abs/1910.01108
44.
Lan
,
Z.
,
Chen
,
M.
,
Goodman
,
S.
,
Gimpel
,
K.
,
Sharma
,
P.
, and
Soricut
,
R.
,
2020
, “
ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations
,”
ICLR
, Addis Ababa, Ethiopia.
45.
DaiYang
,
Z.
,
Yang
,
Z.
,
Carbonell
,
Y.
,
Le
,
J. Q.
, and
Salakhutdinov
,
R.
,
2019
, “
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
,” arxiv.1901.02860
46.
Yang
,
Z.
,
Dai
,
Z.
,
Yang
,
Y.
,
Carbonell
,
J.
,
Salakhutdinov
,
R.
, and
Le
,
Q.
,
2019
, “
XLNet: Generalized Autoregressive Pretrainingfor Language Understanding
,”
NeurIPS
, Vancouver, BC, Canada.
47.
ISO/IEC/IEEE
,
2015
, “
Systems and Software Engineering—System Life Cycle Processes
,”
ISO/IEC/IEEE
, Geneva, Switzerland, Standard No. 15288.
48.
Finnish Radiation and Nuclear Safety Authority (STUK),
2020
, “Regulatory Guides on Nuclear Safety,” Finnish Radiation and Nuclear Safety Authority, Helsinki, Finland.
49.
International Atomic Energy Agency
,
2020
, “
Safety Standards
,” International Atomic Energy Agency, Vienna, Austria, accessed Apr. 8, 2020, https://www.iaea.org/resources/safety-standards
50.
International Organization for Standardization
,
2020
, “
Standards
,” International Organization for Standardization, Vernier, Geneva, Switzerland, accessed Apr. 9, 2020, https://www.iso.org/standards.html
51.
International Electrotechnical Commission
,
2020
, “
Standards Development
,” International Electrotechnical Commission, Geneva, Switzerland, accessed Apr. 9, 2020, https://www.iec.ch/standards-development
52.
The Nuclear Safety Standards Commission (Kerntechnischer Ausschuss - KTA),
2020
, “The KTA Program of Standards,” The Nuclear Safety Standards Commission (Kerntechnischer Ausschuss - KTA), Salzgitter, Germany, accessed Apr. 9, 2020, http://www.kta-gs.de/welcome_engl.htm
53.
Hungarian Atomic Energy Authority
,
2020
, “Legal Framework,” Hungarian Atomic Energy Authority, Budapest, Hungary, accessed Apr. 10, 2020, https://www.oah.hu/web/v3/HAEAportal.nsf/web?openagent&menu=03&submenu=3_0
54.
The Office for Nuclear Regulation (ONR),
2020
, “Safety Assessment Principles,” The Office for Nuclear Regulation (ONR), Bootle, Merseyside, England, accessed Apr. 9, 2020, http://www.onr.org.uk/saps/index.htm
55.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
,
Antiga
,
L.
,
Desmaison
,
A.
,
Kopf
,
A.
,
Yang
,
E.
, and
DeVito
,
Z.
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Conference on Neural Information Processing Systems (NeurIPS), Vol.
33, Vancouver, BC, Canada.
56.
GitHub, Inc.
,
2018
, “
Fastai
,” San Francisco, CA, accessed May 21, 2020, https://github.com/fastai/fastai
57.
Brew
,
T. W.
,
Debut
,
L.
,
Sanh
,
V.
,
Chaumond
,
J.
,
Delangue
,
C.
,
Cistac
,
A. M. P.
,
Rault
,
T.
,
Louf
,
R.
,
Funtowicz
,
M.
, and
Brew
,
J.
,
2019
, “
HuggingFace's Transformers: State-of-the-Art Natural Language Processing
,”
arxiv.1910.03771
.https://arxiv.org/abs/1910.03771
58.
Le
,
H.
,
Vial
,
L.
,
Frej
,
J.
,
Segonne
,
V.
,
Coavoux
,
M.
,
Lecouteux
,
B.
,
Allauzen
,
A.
,
Crabbé
,
B.
,
Besacier
,
L.
, and
Schwab
,
D.
,
2020
, “
FlauBERT: Unsupervised Language Model Pre-Training for French
,”
arxiv.1912.05372.
https://arxiv.org/abs/1912.05372
59.
Virtanen
,
A.
,
Kanerva
,
J.
,
Ilo
,
R.
,
Luoma
,
J.
, and
Luotolahti
,
J.
,
2019
, “
Multilingual is Not Enough: BERT for Finnish
,”
arxiv:1912.07076v1
.https://arxiv.org/abs/1912.07076
60.
Lipton
,
Z. C.
,
Elkan
,
C.
, and
Naryanaswamy
,
B.
,
2014
, “
Thresholding Classifiers to Maximize F1 Score
,”
arxiv:1402.1892
.https://arxiv.org/abs/1402.1892
You do not currently have access to this content.