Abstract
Melting of the terminal debris bed at the bottom of a Canada deuterium uranium (CANDU) 6 calandria vessel during a severe accident is studied using a three-dimensional transient finite element analysis. Settling of the debris is modeled, as are the effects of changing temperature and porosity on debris material properties. The time and magnitude of maximum heat rejection from the debris bed, and the maximum mass of molten debris, are calculated as functions of the accident timing. The results are compared with those from the modular accident analysis program (MAAP)-CANDU severe accident code.
References
1.
Blahnik
,
C.
,
Luxat
,
J. C.
, and
Nijhawan
,
S.
, 1999
, “
CANDU Response to Loss of All Heat Sinks
,” NURETH-9,
San Francisco, CA
, Oct. 3
–8
.2.
Rogers
,
J. T.
, and
Lamari
,
M.
, 1997
, “
Transient Melting and Re-Solidification of CANDU Core Debris in Severe Accidents
,” 20th CNS Nuclear Simulation Symposium
,
Niagara-on-the-Lake, ON, Canada
, Sept. 7
–9
.3.
Mathew
,
P. M.
, 2004
, “
Severe Core Damage Accident Progression Within a CANDU Calandria Vessel
,” MASCA Seminar,
Aix-en-Provence, France
, June 10
–11
.4.
Mladin
,
M.
,
Dupleac
,
D.
,
Prisecaru
,
I.
, and
Mladin
,
D.
, 2010
, “
Adapting and Applying SCDAP/RELAP5 to CANDU in-Vessel Retention Studies
,” Ann. Nucl. Energy
,
37
(6
), pp. 845
–852
.10.1016/j.anucene.2010.02.0155.
Nicolici
,
S.
,
Dupleac
,
D.
, and
Prisecaru
,
I.
, 2013
, “
Numerical Analysis of Debris Melting Phenomena During Late Phase CANDU 6 Severe Accident
,” Nucl. Eng. Des.
,
254
, pp. 272
–279
.10.1016/j.nucengdes.2012.09.0236.
Kulkarni
,
P. P.
,
Prasad
,
S. V.
,
Nayak
,
A. K.
, and
Vijayan
,
P. K.
, 2013
, “
Thermal and Structural Analysis of Calandria Vessel of a PHWR During a Severe Accident
,” Nucl. Eng. Technol.
,
45
(4
), pp. 469
–476
.10.5516/NET.03.2012.0527.
Mishra
,
J.
,
Mohan
,
V. P. N.
,
Ali
,
S. M.
, and
Balasubramaniyan
,
V.
, 2015
, “
Assessment of Structural Integrity of Calandria Vessel During Core Melt Event
,” CANSAS & NRTHS,
Anushaktinagar, India
, Dec. 8–11, Paper No. C05.8.
Singh
,
B. K.
,
Singh
,
R. J.
,
Kumar
,
R.
,
Baburajan
,
P. K.
,
Rao
,
R. S.
, and
Gaikwad
,
A. J.
, 2017
, “
Coupled Thermo-Structural Analysis for in-Vessel Retention in PHWR Using ABAQUS
,” Nucl. Eng. Des.
,
323
, pp. 407
–416
.10.1016/j.nucengdes.2017.05.0249.
Mills
,
A. F.
, 1999
, Heat Transfer
, 2nd ed.,
Prentice Hall
, Upper Saddle River, NJ.10.
Rogers
,
J. T.
, 1984
, “
Thermal and Hydraulic Behavior of CANDU Cores Under Severe Accident Conditions – Final Report
,” Vol.
1, Atomic Energy Control Board, Ottawa, ON, Canada, Report No. INFO-0136-2.11.
Rempe
,
J. L.
, 1993
, “
Light Water Reactor Lower Head Failure Analysis
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-5642.12.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007
, Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
, Hoboken, NJ.13.
Mathew
,
P. M.
,
Petoukhov
,
S. M.
,
Brown
,
M. J.
, and
Awadh
,
B.
, 2009
, “
Severe Core Damage Accident Analysis for a CANDU Plant
,”
ISAMM
,
Böttstein, Switzerland
.Copyright © 2021 by ASME
You do not currently have access to this content.