Abstract

During burnup of nuclear fuel, fission products accumulate. Post-irradiation examination of burned up nuclear fuel has revealed the presence of several phases, namely, the fuel matrix of UO2, with dissolved oxides present; a white metallic phase consisting of the so-called “noble metals” (i.e., Mo–Ru–Pd–Rh–Tc); a gray oxide phase consisting of alkali or alkaline earth oxides (e.g., BaZrO3 or Cs2UO4); and an another metallic inclusion containing a mixture of UPd3–URh3–URu3, which is not completely assessed due to the lack of phase diagrams of the UPd3–URh3, URh3–URu3, and UPd3–URu3. Understanding how these phases behave becomes especially important from a safety perspective, if one considers a potential accident scenario. The quaternary system U–Pd–Rh–Ru has been evaluated and a thermodynamic model has been developed by first considering the six binary subsystems and the four ternary subsystems. A critical examination of the U–Pd, U–Rh, and U–Ru experimental phase diagrams has been made, with attention placed on both the solution phases, generally present on the uranium side of the diagrams and the UPd3–URh3–URu3 compounds. Finally, the implications of this new model and its potential refinements of the Royal Military College of Canada nuclear fuel treatment developed by previous authors (notably the RMCC group under Thompson and Lewis) will be explored.

References

1.
Olander
,
D. R.
,
1976
, “
Fundamental Aspects of Nuclear Reactor Fuel Elements
,” Technical Information Center, U.S. Department of Energy, Washington, DC, Report No. TID-26711-P2.
2.
Cubicciotti
,
D.
,
1981
, “
A Model for Release of Fission Gases and Volatile Fission Products From Irradiated UO2 in Steam Environment
,”
Nucl. Technol.
,
53
(
1
), pp.
5
7
.10.13182/NT81-A17050
3.
Cubicciotti
,
D.
,
1986
, “
Vaporization Thermodynamics of Fission Products From Fuel Under Nuclear-Accident Conditions
,”
Adv. Ceram.
,
17
, pp.
211
222
.
4.
Cubicciotti
,
D.
, and
Sehgal
,
B. R.
,
1984
, “
Vapour Transport of Fission Products in Postulated Severe Light Water Reactor Accidents
,”
Nucl. Technol.
,
65
(
2
), pp.
266
291
.10.13182/NT84-A33411
5.
Cubicciotti
,
D.
,
1988
, “
Vapour Transport of Fission Products Under Nuclear-Accident Conditions
,”
J. Nucl. Mater.
,
154
(
1
), pp.
53
61
.10.1016/0022-3115(88)90118-3
6.
Corcoran
,
E. C.
,
Kaye
,
M. H.
, and
Piro
,
M. H. A.
,
2016
, “
An Overview of a Thermochemical Treatment of CANDU Fuel and Applications to the Nuclear Industry
,”
CALPHAD
,
55
, pp.
52
62
.10.1016/j.calphad.2016.04.010
7.
Bramman
,
J. I.
,
Sharpe
,
R. M.
,
Thom
,
D.
, and
Yates
,
G.
,
1968
, “
Metallic Fission-Product Inclusions in Irradiated Oxide Fuels
,”
J. Nucl. Mater.
,
25
(
2
), pp.
201
215
.10.1016/0022-3115(68)90045-7
8.
Kleykamp
,
H.
,
1985
, “
The Chemical State of Fission Products in Oxide Fuels
,”
J. Nucl. Mater.
,
131
(
2–3
), pp.
221
246
.10.1016/0022-3115(85)90460-X
9.
Uno
,
M.
,
Kurosaki
,
K.
, and
Nakamura
,
A.
,
1997
, “
Reactions of Uranium Nitride With Platinum-Family Metals
,”
J. Nucl. Mater.
,
247
, pp.
322
327
.10.1016/S0022-3115(97)00085-8
10.
Kurosaki
,
K.
, and
Uno
,
M.
,
1998
, “
Phase Equilibria in the Ternary URu3-URh3-UPd3 System
,”
J. Alloys Compd.
,
271–273
, pp.
641
644
.10.1016/S0925-8388(98)00177-7
11.
Kurosaki
,
K.
, and
Uno
,
M.
,
1998
, “
Formation of the Cu3Au Type Solid Solution of UPd3 by Doping a Small Amount of URu3
,”
J. Alloys Compd.
,
274
(
1–2
), pp.
222
228
.10.1016/S0925-8388(98)00544-1
12.
Kaye
,
M. H.
,
Lewis
,
B. J.
, and
Thompson
,
W. T.
,
2007
, “
Thermodynamic Treatment of Noble Metal Fission Products in Nuclear Fuel
,”
J. Nucl. Mater.
,
366
(
1–2
), pp.
8
27
.10.1016/j.jnucmat.2006.11.014
13.
Kaye
,
M. H.
,
2001
, “
A Thermodynamic Model for Noble Metal Alloy Inclusions in Nuclear Fuel Rods and Application to the Study of Loss-of-Coolant Accidents
,”
Ph.D. dissertation
, Queen's University, Kingston, ON.https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/ftp05/NQ63427.pdf
14.
Catterall
,
J. A.
,
Grogan
,
J. D.
, and
Pleasance
,
R. J.
,
1956
, “
The System Uranium-Palladium
,”
J. Inst. Met.
,
85
, pp.
63
67
.
15.
Park
,
J. J.
, and
Buzzard
,
R. W.
,
1956
, “
Constitution of Uranium and Platinum Metals
,”
United States Atomic Energy Commission, Metallurgy Information Meeting, Ames
, IA, May 2–4, Ames Laboratory, Iowa State College, pp.
89
102
.
16.
Park
,
J. J.
,
Fickle
,
D. P.
, and
Mullen
,
L. R.
,
1963
, “
The Uranium-Palladium System
,” U.S. Department of Commerce/National Bureau of Standards, Washington, DC.
17.
Pells
,
G. P.
,
1964
, “
The Palladium-Uranium Phase Diagram Up to 25 at.% Uranium
,”
J. Inst. Met.
,
92
, pp.
416
418
.
18.
Terekhov
,
G. I.
,
Sinyakova
,
S. I.
,
Vendernikov
,
M. V.
, and
Ivanov
,
O. S.
,
1968
, “
Phase Diagram of the Palladium Side of the Uranium-Palladium System
,”
Physical Chemistry of Alloys and Refractory Compounds of Thorium and Uranium
,
O. S.
Ivanov
, ed.,
Keter Press
, pp.
118
122
(Academy of Sciences of the USSR, Moscow; translated into English by Jerusalem (1972)).
19.
Kleykamp
,
H.
, and
Kang
,
S. G.
,
1991
, “
The Constitution of the Uranium-Palladium and Uranium-Rhodium-Palladium Systems
,”
Z. Metallkund.
,
82
, pp.
544
552
.
20.
Park
,
J. J.
,
1965
, “
Uranium Phase Diagrams and a Solid Solubility Correlation
,” Ph.D. dissertation,
University of Maryland
, College Park, MD.
21.
Park
,
J. J.
,
1968
, “
Reactions of Uranium and the Platinide Elements (I and II)
,”
J. Res. Natl. Bur. Stand.-A
,
72
(
1
), pp.
1
17
.
22.
Chiswik
,
H. H.
,
Dwight
,
A. E.
,
Lloyd
,
L. T.
,
Nevitt
,
M. V.
, and
Zegler
,
S. T.
,
1958
, “
Advances in the Physical Metallurgy of Uranium and Its Alloys
,”
Proceeding of the Second International Conference on Peaceful Uses of Atomic Energy
, Geneva, Switzerland, Sept. 1–13, p.
35
.
23.
Naraine
,
M. G.
, and
Bell
,
H. B.
,
1974
, “
Thermodynamic and Phase Behaviour in the U-Rh-C System
,”
J. Nucl. Mater.
,
50
(
1
), pp.
83
90
.10.1016/0022-3115(74)90063-4
24.
Rough
,
F. A.
, and
Bauer
,
A. A.
,
1958
,
Constitution of Uranium Thorium Alloys
,
Battelle Memorial Institute, U.S. Atomic Energy Commission
,
Columbus, OH
.
25.
Mason
,
R. E.
, and
El-Genk
,
M. S.
,
1994
, “
Experimental Investigation of the Ruthenium-Uranium and Rhenium-Uranium Systems
,”
J. Nucl. Mater.
,
217
(
3
), pp.
304
321
.10.1016/0022-3115(94)90381-6
26.
Lorenzelli
,
N.
, and
Marcon
,
J. P.
,
1972
, “
Étude Thermodynamique D'un Combustible UC Simulant un Taux de Combustion de 100.000 MWJ/t Par Mesure de Vaporisation
,”
J. Nucl. Mater.
,
44
(
1
), pp.
57
63
.10.1016/0022-3115(72)90128-6
27.
Wijbenga
,
G.
,
1982
, “
The Enthalpy of Formation of UPd3 by Fluorine Bomb Calorimetry
,”
J. Chem. Thermodyn.
,
14
(
5
), pp.
483
493
.10.1016/0021-9614(82)90140-9
28.
Burriel
,
R.
,
To
,
M.
,
Zainel
,
H.
,
Westrum
,
E. F.
, Jr.
,
Cordfunke
,
E. H. P.
,
Muis
,
R. P.
, and
Wijbenga
,
G.
,
1988
, “
Thermodynamics of Uranium Intermetallic Compounds—II: Heat Capacity of UPd3 From 5 to 850 K
,”
J. Chem. Thermodyn.
,
20
(
7
), pp.
815
823
.10.1016/0021-9614(88)90070-5
29.
de Boer
,
F. R.
,
1988
,
Cohesion in Metals: Transition Metal Alloys
,
Elsevier Science Publishers B.V
,
Amsterdam, The Netherlands
, p.
758
.
30.
Cordfunke
,
E. H. P.
, and
Konings
,
R. J. M.
,
1990
,
Thermochemical Data for Reactor Materials and Fission Products
,
Elsevier Science Publishers B.V
,
Amsterdam, The Netherlands
, p.
695
.
31.
Jung
,
W.-G.
, and
Kleppa
,
O. J.
,
1991
, “
Enthalpies of Formation of Me3U (Me = Ru, Rh, Pd) by High-Temperature Reaction Calorimetry
,”
J. Chem. Thermodyn.
,
23
(
2
), pp.
147
153
.10.1016/S0021-9614(05)80291-5
32.
Prasad
,
R.
,
Dash
,
S.
,
Parida
,
S. C.
,
Singh
,
Z.
, and
Venugopal
,
V.
,
2000
, “
Gibbs Energy of Formation of UPd3 (s)
,”
J. Nucl. Mater.
,
277
(
1
), pp.
45
48
.10.1016/S0022-3115(99)00143-9
33.
Huang
,
J.
,
Tsuchiya
,
B.
,
Konashi
,
K.
, and
Yamawaki
,
M.
,
2001
, “
Thermodynamic Analysis of Chemical States of Fission Products in Uranium-Zirconium Hydride Fuel
,”
J. Nucl. Mater.
,
294
(
1–2
), pp.
154
159
.10.1016/S0022-3115(01)00446-9
34.
Holleck
,
H.
, and
Kleykamp
,
H.
,
1972
, “
Phasengleichgewichte Und Thermodynamische Untersuchungen im System Uran-Rhodium-Kohlenstoff
,”
J. Nucl. Mater.
,
45
(
1
), pp.
47
54
.10.1016/0022-3115(72)90111-0
35.
Wijbenga
,
G.
, and
Cordfunke
,
E. H. P.
,
1982
, “
Determination of Standard Gibbs Energies of Formation of URh3 and URu3 by Solid-State e.m.f
,”
Meas., J. Chem. Thermodyn.
,
14
(
5
), pp.
409
417
.10.1016/0021-9614(82)90132-X
36.
Cordfunke
,
E. H. P.
,
Muis
,
R. P.
,
Wijbenga
,
G.
,
Burriel
,
R.
,
To
,
M.
,
Zainel
,
H.
, and
Westrum
,
E. F.
, Jr.
,
1985
, “
Thermodynamics of Uranium Intermetallic Compounds—I: Heat Capacities of URu3 and URh3 From 5 to 850 K
,”
J. Chem. Thermodyn.
,
17
(
11
), pp.
1035
1044
.10.1016/0021-9614(85)90088-6
37.
Edwards
,
J. G.
,
Starzynski
,
J. S.
, and
Peterson
,
D. E.
,
1980
, “
Sublimation Thermodynamics of the URu3 Compound
,”
J. Chem. Phys.
,
73
(
2
), pp.
908
912
.10.1063/1.440209
38.
Berche
,
A.
,
Dupin
,
N.
,
Guéneau
,
C.
,
Rado
,
C.
,
Sundman
,
B.
, and
Dumas
,
J. C.
,
2011
, “
CALPHAD Thermodynamic Description of Some Binary Systems Involving U
,”
J. Nucl. Mater.
,
411
(
1–3
), pp.
131
143
.10.1016/j.jnucmat.2011.01.043
39.
Wang
,
L.
, and
Kaye
,
M. H.
,
2015
, “
A Re-Examination of Thermodynamic Modelling of U-Ru Phase Diagram
,”
35th Annual Conference of the Canadian Nuclear Society, (1A4 - Nuclear Materials)
, Saint John, NB, Canada, May 31–June 3, p.
10
.
40.
Kaye
,
M. H.
, and
Wang
,
L.
,
2016
, “
U-Ru-Rh-Pd Quaternary System: Thermodynamic Calculations and Experimental Explorations
,”
Proceedings of the 36th Annual Conference of the Canadian Nuclear Society
, Toronto, ON, Canada, June 19–22, p.
19
.https://www.researchgate.net/publication/306566049_U-Ru-Rh-Pd_QUATERNARY_SYSTEM_THERMODYNAMIC_CALCULATIONS_AND_EXPERIMENTAL_EXPLORATIONS
41.
Kaye
,
M. H.
, and
Wang
,
L.
,
2016
, “
An Alternative Strategy for Thermodynamic Evaluations of Experimental U-Me Phase Diagrams to Resolve Considerable Experimental Discrepancies
,”
Proceedings of the 36th Annual Conference of the Canadian Nuclear Society
, Toronto, ON, Canada, June 19–22, p.
14
.https://www.researchgate.net/publication/306373560_An_Alternative_Strategy_for_Thermodynamic_Evaluations_of_Experimental_U-_Me_Phase_Diagrams_to_Resolve_Considerable_Experimental_Discrepancies
42.
Wang
,
L.
, and
Kaye
,
M. H.
,
2016
, “
The Other Metallic Phase in Spent Nuclear Fuel - A Complete Thermodynamic Evaluation of the U-Pd-Rh-Ru System
,”
Proceedings of the 13th International Conference on CANDU Fuel
, Kingston, ON, Canada, Aug. 15–18, p.
19
.
43.
Dinsdale
,
A.
,
1991
, “
SGTE Data for Pure Elements
,”
CALPHAD
,
15
(
4
), pp.
317
425
.10.1016/0364-5916(91)90030-N
44.
Paschoal
,
J. O. A.
,
Kleykamp
,
H.
, and
Thümmler
,
F.
,
1983
, “
Phase Equilibria in the Quaternary Molybdenum-Ruthenium-Rhodium-Palladium System
,”
Z. Metallkund.
,
74
, pp.
652
664
.
45.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
,
Hack
,
K.
,
Jung
,
I.-H.
,
Kang
,
Y.-B.
,
Melançon
,
J.
,
Pelton
,
A. D.
,
Petersen
,
S.
,
Robelin
,
C.
,
Sangster
,
J.
,
Spencer
,
P.
, and
Van Ende
,
M.-A.
,
2016
, “
FactSage Thermochemical Software and Databases, 2010-2016
,”
CALPHAD
,
54
, pp.
35
53
.10.1016/j.calphad.2016.05.002
46.
Okamoto
,
H.
,
1993
, “
Pd-U (Palladium-Uranium)
,”
J. Phase Equilib.
,
14
(
2
), pp.
264
265
.10.1007/BF02667829
47.
Kaye
,
M. H.
, and
Wang
,
L.
,
2017
, “
A Proposed Catalytic Mechanism of Pd on the Formation of UBe13 in Experimental Construction of U-Pd Phase Diagrams
,”
Proceedings of the 37th Annual Conference of the Canadian Nuclear Society
, Niagara Falls, ON, Canada, June 4–7, pp.
1024
1037
.https://www.researchgate.net/publication/317415148_A_PROPOSED_CATALYTIC_MECHANISM_OF_Pd_ON_THE_FORMATION_OF_UBe13_IN_EXPERIMENTAL_CONSTRUCTION_OF_U-Pd_PHASE_DIAGRAMS
You do not currently have access to this content.