Abstract

Today's sensory and processing technologies are perceptive and precise. They can discern the environment, solve complicated problems, make assessments, and learn from experience. Although they do not think the way humans do, they can replicate many human intellectual aptitudes. Throughout the last several decades, companies have implemented advanced technology and increasingly removed the human from many aspects of nuclear operation. There are many advantages to this transition, but, like any system modification, failures inevitably manifest. In the instance of this article, human errors have resulted and have accounted for several accidents at nuclear facilities in the United States due to this transition. The accidents at these facilities due to human error often result in plant shutdowns, unnecessary expenses, and have the capacity to be problematic for people, the facilities, and environments. This article explores the context surrounding the complexity of changing technologies at the nuclear facilities and the potential exacerbation of problems caused by human error when technology advancements concerning operator interaction with control systems are implemented. To understand the complexity surrounding the human interaction with advancing technologies, the concepts of human performance and human factors are examined and then the impact of these concepts within the framework of advancing technology are applied to the operation of nuclear facilities. This review draws attention to the vulnerabilities due to human error at nuclear facilities within the context of continually advancing technology and sheds insight on the role human performance and human factors have on system design and the resulting outcome.

References

1.
Corrado
,
J. K.
, 2017, “Technological Advances
, Human Performance, and the Operation of Nuclear Facilities
,”
Ph.D. dissertation
,
Department of Systems Engineering, Colorado State University
, Fort Collins, CO, p. 260. https://mountainscholar.org/bitstream/handle/10217/181351/Corrado_colostate_0053A_14074.pdf?sequence=1
2.
Proctor
,
R. W.
, and
Van Zandt
,
T.
,
2008
,
Human Factors in Simple and Complex Systems
, 2nd ed.,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
, p.
696
.
3.
Karwowski
,
W.
,
2006
,
International Encyclopedia of Ergonomics and Human Factors
, 2nd ed.,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
, p.
3728
.
4.
Duffy
,
V. G.
, ed.,
2012
,
Advances in Applied Human Modeling and Simulation
,
CRC Press/Taylor & Francis Group
,
Boca Raton, FL
, p.
578
.
5.
Salvendy
,
G.
,
2012
,
Handbook of Human Factors and Ergonomics
, 4th ed.,
Wiley
,
Hoboken, NJ
, p.
1760
.
6.
Loomis
,
D.
,
2011
, “
Risks From Nuclear Accidents Are Still Uncertain
,”
Occup. Environ. Med.
,
68
(
6
), p.
387
.10.1136/oemed-2011-100157
7.
Karakosta
,
C.
,
Charalampos
,
P.
,
Vangelis
,
M.
, and
Psarras
,
J.
,
2013
, “
Renewable Energy and Nuclear Power Towards Sustainable Development: Characteristics and Prospects
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
187
–1
97
.10.1016/j.rser.2013.01.035
8.
Rothwell
,
W. J.
,
Hohne
,
C. K.
, and
King
,
S. B.
,
2013
,
Human Performance Improvement: Building Practitioner Competence
, 2nd ed.,
Routledge
,
New York
, p.
370
.
9.
U.S. Department of Energy
,
2009
, Human Performance Improvement Handbook,
U.S. Department of Energy
,
Washington, DC
, p.
175
, accessed July 15, 2019, https://www.standards.doe.gov/standards-documents/1000/1028-BHdbk-2009-v1/@@images/file
10.
Rasmussen
,
J.
,
1982
, “
Human Errors. A Taxonomy for Describing Human Malfunction in Industrial Installations
,”
J. Occup. Accid.
,
4
(
2–4
), pp.
311
333
.10.1016/0376-6349(82)90041-4
11.
Reason
,
J.
,
1990
,
Human Error
,
Cambridge University Press
,
Cambridge
, UK, p.
320
.
12.
Norman
,
D. A.
,
1981
, “
Categorization of Action Slips
,”
Psychol. Rev.
,
88
(
1
), pp.
1
15
.10.1037/0033-295X.88.1.1
13.
Janis
,
I. L.
,
1972
,
Victims of Groupthink; a Psychological Study of Foreign-Policy Decisions and Fiascoes
,
Houghton Mifflin
,
Boston, MA
, p.
277
.
14.
Cacciabue
,
P. C.
, and
Cassani
,
M.
,
2012
, “
Modelling Motivations, Tasks and Human Errors in a Risk-Based Perspective
,”
Cognition, Technol. Work
,
14
(
3
), pp.
229
241
.10.1007/s10111-011-0205-4
15.
Stoop
,
J.
, and
Dekker
,
S.
,
2012
, “
Are Safety Investigations Pro-Active?
,”
Saf. Sci.
,
50
(
6
), pp.
1422
1430
.10.1016/j.ssci.2011.03.004
16.
Stern
,
M. E.
, and
Stern
,
M. M.
,
2012
, “Does Nuclear Power Have a  Future?,”
Utah Environ. Law Rev.
,
32
(
2
), pp.
431
489
.https://epubs.utah.edu/index.php/jlrel/article/view/793
17.
Chang
,
Y.
,
Bley
,
D.
,
Criscione
,
L.
,
Kirwan
,
B.
,
Mosleh
,
A.
,
Madary
,
T.
,
Nowell
,
R.
,
Richards
,
R.
,
Roth
,
E. M.
,
Sieben
,
S.
, and
Zoulis
,
A.
,
2014
, “
The SACADA Database for Human Reliability and Human Performance
,”
Reliab. Eng. Syst. Saf.
,
125
, pp.
117
133
.10.1016/j.ress.2013.07.014
18.
Ramanujam
,
R.
, and
Goodman
,
P. S.
,
2011
, “
The Link Between Organizational Errors and Adverse Consequences: The Role of Error-Correcting and Error-Amplifying Feedback Processes
,”
in Errors in Organizations
,
D. A.
Hofmann
, and
M.
Frese
, eds., Chap. 10,
Routledge/Taylor & Francis
,
New York
, pp.
245
272
.
19.
Goodman
,
P. S.
,
Ramanujam
,
R.
,
Carroll
,
J. S.
,
Edmondson
,
A. C.
,
Hofmann
,
D. A.
, and
Sutcliffe
,
K. M.
,
2011
, “
Organizational Errors: Directions for Future Research
,”
Res. Organ. Behav.
,
31
, pp.
151
176
.10.1016/j.riob.2011.09.003
20.
Rebhan
,
E.
,
2009
, “
Challenges for Future Energy Usage
,”
Eur. Phys. J. Spec. Top.
,
176
(
1
), pp.
53
80
.10.1140/epjst/e2009-01148-9
21.
Reason
,
J.
,
2000
, “
Human Error: Models and Management
,”
BMJ
,
320
(
7237
), pp.
768
770
.10.1136/bmj.320.7237.768
22.
Hollnagel
,
E.
, and
Woods
,
D. D.
,
2005
,
Joint Cognitive Systems: Foundations of Cognitive Systems Engineering
,
CRC/Taylor & Francis
,
Boca Raton, FL
, p.
240
.
23.
Woods
,
D. D.
,
Dekker
,
S.
,
Cook
,
R.
,
Johannesen
,
L.
, and
Sarter
,
N.
,
2010
,
Behind Human Error
,
Ashgate
,
Farnham
, p.
292
.
24.
Smith
,
G.
,
2012
,
Nuclear Roulette: The Truth About the Most Dangerous Energy Source on Earth
,
Chelsea Green Publishing
,
White River Junction, VT
, p.
320
.
25.
Perrow
,
C.
,
1999
,
Normal Accidents: Living With High-Risk Technologies
,
Princeton University Press
,
Princeton, NJ
, p.
464
.
26.
Neyer
,
A.
,
Bullinger
,
A. C.
, and
Moeslein
,
K. M.
,
2009
, “
Integrating Inside and Outside Innovators: A Sociotechnical Systems Perspective
,”
RD Manag.
,
39
(
4
), pp.
410
419
.10.1111/j.1467-9310.2009.00566.x
27.
Vermaas
,
P.
,
Kroes
,
P.
,
van de Poel
,
I.
,
Franssen
,
M.
, and
Houkes
,
W.
,
2011
, “
A Philosophy of Technology: From Technical Artefacts to Sociotechnical Systems
,”
Synth. Lect. Eng., Technol. Soc.
,
6
(
1
), pp.
1
134
.10.2200/S00321ED1V01Y201012ETS014
28.
Gorman
,
J. C.
,
Cooke
,
N. J.
, and
Salas
,
E.
,
2010
, “
Preface to the Special Issue on Collaboration, Coordination, and Adaptation in Complex Sociotechnical Settings
,”
Human Fact.
,
52
(
2
), pp.
143
146
.10.1177/0018720810372386
29.
Krivit
,
S. B.
,
Lehr
,
J. H.
, and
Kingery
,
T. B.
,
2011
,
Nuclear Energy Encyclopedia
,
Wiley
,
Hoboken, NJ
, p.
624
.
30.
Sehgal
,
B. R.
, ed.,
2012
,
Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology
,
Elsevier/Academic Press
,
Waltham, MA
, p.
740
.
31.
Corrado
,
J.
, and
Sega
,
R.
,
2020
, “
Impact of Advancing Technology on Nuclear Facility Operation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
1
), p. 011002.10.1115/1.4044784
32.
Meserole
,
C.
,
2018
, “
What is Machine Learning?
,” Brookings Institution, Washington, DC, accessed July 15, 2019, https://www.brookings.edu/research/what-is-machine-learning/
33.
United States Nuclear Regulatory Commission,
2012
, Human Factors Engineering Program Review Model (NUREG-0711, Revision 3),
U.S. Nuclear Regulatory Commission
,
Washington, DC
, p.
147
, accessed July 15, 2019, https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0711/
You do not currently have access to this content.