The understanding of the radial distribution of temperature in a fuel pellet, under normal operation and accident conditions, is important for a safe operation of a nuclear reactor. Therefore, in this study, we have solved the steady-state heat conduction equation, to analyze the temperature profiles of a 12 mm diameter cylindrical dispersed nuclear fuels of U3O8-Al, U3Si2-Al, and UN-Al operating at 597 °C. Moreover, we have also derived the thermal conductivity correlations as a function of temperature for U3Si2, uranium mononitride (UN), and Al. To evaluate the thermal conductivity correlations of U3Si2, UN, and Al, we have used density functional theory (DFT) as incorporated in the Quantum ESPRESSO (QE) along with other codes such as Phonopy, ShengBTE, EPW (electron-phonon coupling adopting Wannier functions), and BoltzTraP (Boltzmann transport properties). However, for U3O8, we utilized the thermal conductivity correlation proposed by Pillai et al. Furthermore, the effective thermal conductivity of dispersed fuels with 5, 10, 15, 30, and 50 vol %, respectively of dispersed fuel particle densities over the temperature range of 27–627 °C was evaluated by Bruggman model. Additionally, the temperature profiles and temperature gradient profiles of the dispersed fuels were evaluated by solving the steady-state heat conduction equation by using Maple code. This study not only predicts a reduction in the centerline temperature and temperature gradient in dispersed fuels but also reveals the maximum concentration of fissile material (U3O8, U3Si2, and UN) that can be incorporated in the Al matrix without the centerline melting. Furthermore, these predictions enable the experimental scientists in selecting an appropriate dispersion fuel with a lower risk of fuel melting and fuel cracking.

References

1.
Shuffler
,
C.
,
Trant
,
J.
,
Malen
,
J.
, and
Todreas
,
N.
,
2009
, “
Thermal Hydraulic Analysis for Grid Supported Pressurized Water Reactor Cores
,”
Nucl. Eng. Des.
,
239
(
8
), pp.
1442
1460
.
2.
NEA
,
2012
, “
Nuclear Fuel Safety Criteria Technical Review
,” 2nd ed.,
Nuclear Energy Agency
,
Boulogne-Billancourt, France
.
3.
Olander
,
D. R.
,
1976
, “
Fundamental Aspects of Nuclear Reactor Fuel Elements
,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Report No.
TID-26711-P1
.https://www.osti.gov/biblio/7343826
4.
Allen
,
T.
,
Busby
,
J.
,
Meyer
,
M.
, and
Petti
,
D.
,
2010
, “
Materials Challenges for Nuclear Systems
,”
Mater. Today
,
13
(
12
), pp.
14
23
.
5.
Kim
,
Y. S.
,
2012
, “
Uranium Intermetallic Fuels (U-All, U-Si, U-Mo)
,”
Compr. Nucl. Mater.
,
3
, pp.
391
422
.
6.
Keiser
,
D. D.
,
Hayes
,
S. L.
,
Meyer
,
M. K.
, and
Clark
,
C. R.
,
2003
, “
High-Density, Low-Enriched Uranium Fuel for Nuclear Research Reactors
,”
JOM
,
55
(
9
), pp.
55
58
.
7.
Pasto
,
A. E.
,
Copeland
,
G. L.
, and
Martin
,
M. M.
,
1980
, “
Quantitative Differential Thermal Analysis Study of the U3O8-Al Thermite Reaction
,” Oak Ridge National Laboratory, Oak Ridge, TN,
Technical Report
.https://inis.iaea.org/search/search.aspx?orig_q=RN:12574031
8.
Snelgrove
,
J. I.
,
Hofman
,
G. L.
,
Meyer
,
M. K.
,
Trybus
,
C. L.
, and
Wiencek
,
T. C.
,
1997
, “
Development of Very-High-Density Low-Enriched-Uranium Fuels
,”
Nucl. Eng. Des.
,
178
(
1
), pp.
119
126
.
9.
Wood
,
S. E.
,
White
,
J. T.
, and
Nelson
,
A. T.
,
2017
, “
Oxidation Behavior of U-Si Compounds in Air From 25 to 1000 C
,”
J. Nucl. Mater.
,
484
, pp.
245
257
.
10.
Dell
,
R. M.
,
Wheeler
,
V. J.
, and
Mciver
,
E. J.
,
1966
, “
Oxidation of Uranium Mononitride and Uranium Monocarbide
,”
Trans. Faraday Soc.
,
62
, pp.
3592
3606
.
11.
Paljević
,
M.
, and
Despotović
,
Z.
,
1975
, “
Oxidation of Uranium Mononitride
,”
J. Nucl. Mater.
,
57
(
3
), pp.
253
257
.
12.
Wood
,
E. S.
,
White
,
J. T.
, and
Nelson
,
A. T.
,
2017
, “
The Effect of Aluminum Additions on the Oxidation Resistance of U3Si2
,”
J. Nucl. Mater.
,
489
, pp.
84
90
.
13.
Pillai
,
C. G. S.
,
Dua
,
A. K.
, and
Raj
,
P.
,
2001
, “
Thermal Conductivity of U3O8 from 300 to 1100 K
,”
J. Nucl. Mater.
,
288
(
2–3
), pp.
87
91
.
14.
Szpunar
,
B.
, and
Szpunar
,
J. A.
,
2014
, “
Thermal Conductivity of Uranium Nitride and Carbide
,”
Int. J. Nucl. Energy
,
2014
, p.
178360
.
15.
Poncé
,
S.
,
Margine
,
E. R.
,
Verdi
,
C.
, and
Giustino
,
F.
,
2016
, “
EPW: Electron–Phonon Coupling, Transport and Superconducting Properties Using Maximally Localized Wannier Functions
,”
Comput. Phys. Commun.
,
209
, pp.
116
133
.
16.
Madsen
,
G. K. H.
, and
Singh
,
D. J.
,
2006
, “
Boltztrap. A Code for Calculating Band-Structure Dependent Quantities
,”
Comput. Phys. Commun.
,
175
(
1
), pp.
67
71
.
17.
Li
,
W.
,
Carrete
,
J.
,
Katcho
,
N. A.
, and
Mingo
,
N.
,
2014
, “
ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons
,”
Comput. Phys. Commun.
,
185
(
6
), pp.
1747
1758
.
18.
Giannozzi
,
P.
,
Baroni
,
S.
,
Bonini
,
N.
,
Calandra
,
M.
,
Car
,
R.
,
Cavazzoni
,
C.
,
Ceresoli
,
D.
,
Chiarotti
,
G. L.
,
Cococcioni
,
M.
,
Dabo
,
I.
,
Dal Corso
,
A.
,
Fabris
,
S.
,
Fratesi
,
G.
,
de Gironcoli
,
S.
,
Gebauer
,
R.
,
Gerstmann
,
U.
,
Gougoussis
,
C.
,
Kokalj
,
A.
,
Lazzeri
,
M.
,
Martin-Samos
,
L.
,
Marzari
,
N.
,
Mauri
,
F.
,
Mazzarello
,
R.
,
Paolini
,
S.
,
Pasquarello
,
A.
,
Paulatto
,
L.
,
Sbraccia
,
C.
,
Scandolo
,
S.
,
Sclauzero
,
G.
,
Seitsonen
,
A. P.
,
Smogunov
,
A.
,
Umari
,
P.
, and
Wentzcovitch
,
R. M.
,
2009
, “
QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials
,”
J. Phys. Condens. Matter
,
21
(
39
), p.
395502
.
19.
Miller
,
V. J.
,
1967
, “
Estimating Thermal Conductivity of Cermet Fuel Materials for Nuclear Reactor Application
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TN-D-3898
.https://ntrs.nasa.gov/search.jsp?R=19670013537
20.
Barbara
,
S.
,
Linu
,
M.
,
Ericmoore
,
J.
,
Ranasinghe
,
J.
,
Rossland
,
I.
, and
Szpunar
,
J. A.
,
2016
, “
First-Principles Studies of Thermal Conductivity of Nuclear Fuel Materials
,”
13th International Conference on CANDU Fuel
, Kingston, ON, Canada, Aug. 15–18.
21.
Szpunar
,
B.
, and
Szpunar
,
J. A.
,
2013
, “
Thoria Enhancement of Nuclear Reactor Safety
,”
Phys. Int.
,
4
(
2
), pp.
110
119
.
22.
Lewis
,
B. J.
,
Szpunar
,
B.
, and
Iglesias
,
F. C.
,
2002
, “
Fuel Oxidation and Thermal Conductivity Model for Operating Defective Fuel Rods
,”
J. Nucl. Mater.
,
306
(
1
), pp.
30
43
.
23.
Abu-eishah
,
S. I.
,
2000
, “
Correlations for the Thermal Conductivity of Metals as a Function of Temperature
,”
Int. J. Thermophys.
,
22
(
6
), pp.
1855
1868
.
24.
Jain
,
A.
, and
McGaughey
,
J. H.
,
2016
, “
Thermal Transport by Phonons and Electrons in Aluminum, Silver, and Gold From First Principles
,”
Phys. Rev. B
,
93
(
8
), pp.
1
5
.
25.
Togo
,
A.
, and
Tanaka
,
I.
,
2015
, “
First Principles Phonon Calculations in Materials Science
,”
Scr. Mater.
,
108
, pp.
1
5
.
26.
Kurosaki
,
K.
,
Yano
,
K.
,
Yamada
,
K.
,
Uno
,
M.
, and
Yamanaka
,
S.
,
2000
, “
A Molecular Dynamics Study of the Heat Capacity of Uranium Mononitride
,”
J. Alloys Compd.
,
297
(
1–2
), pp.
1
4
.
27.
Hayes
,
S. L.
,
Thomas
,
J. K.
, and
Peddicord
,
K. L.
,
1990
, “
Material Property Correlations for Uranium Mononitride
,”
J. Nucl. Mater.
,
171
(
2–3
), pp.
262
270
.
28.
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
1966
, “
Thermal Conductivity of Selected Materials
,” National Bureau of Standards, Washington, DC, Standard No.
8
.https://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds8.pdf
29.
Muta
,
H.
,
Kurosaki
,
K.
,
Uno
,
M.
, and
Yamanaka
,
S.
,
2008
, “
Thermal and Mechanical Properties of Uranium Nitride Prepared by SPS Technique
,”
J. Mater. Sci.
,
43
(
19
), pp.
6429
6434
.
30.
White
,
J. T.
,
Nelson
,
A. T.
,
Dunwoody
,
J. T.
,
Byler
,
D. D.
,
Safarik
,
D. J.
, and
McClellan
,
K. J.
,
2015
, “
Thermophysical Properties of U3Si2 to 1773 K
,”
J. Nucl. Mater.
,
464
, pp.
275
280
.
31.
Shimizu
,
H.
,
1965
, “
The Properties and Irradiation Behavior of U3Si2
,” Atomics International, Canoga Park, CA, Report No.
NAA-SR-10621
.https://www.osti.gov/biblio/4639974-properties-irradiation-behavior-sub-si-sub
32.
Williams
,
R. K.
,
Domagala
,
R. F.
,
Wiencek
,
T.,C.
, and
Graves
,
R. S.
,
1986
, “
Thermal Conductivities of U3Si and U3Si2-Al Dispersion Fuels
,” Argonne National Laboratory, Argonne, IL, Report No.
CONF-851021–1
.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/17/045/17045234.pdf
33.
Matos
,
J. E.
, and
Snelgrove
,
J. L.
,
1992
, “Selected Thermal Properties and Uranium Density Relations for Alloy, Aluminide, Oxide, and Silicide Fuels,”
International Atomic Energy Agency
,
Vienna, Austria
, Technical Report No.
IAEA-TECDOC–643(V.4)
.https://inis.iaea.org/search/search.aspx?orig_q=RN:23087377
You do not currently have access to this content.