Heat-transfer characteristics are especially significant among all issues for the supercritical water-cooled reactors (SCWRs). The two-peak wall-temperature phenomenon that could be verified by Shitsman and Jackson’s experiments occurred in the regions of tb<tpc<tw for vertical upward flow under the extreme heating conditions or accident cases (i.e., q/G>0.6  kJ/kg for water). However, so far the special two-peak result has not been paid much attention due to the difficulty of the experiments. Hence, in this study, numerical analysis was carried out to investigate the characteristics of heat-transfer deterioration (HTD) two-peak phenomenon of supercritical pressure water/carbon dioxide in the conditions of high q/G. The results showed that the higher the heat fluxes were, the more temperature peaks might appear and more unstable flow might be presented. Finally, the mechanism of two-peak HTD was studied through quantitatively analyzing the distribution of flow parameters and thermophysical properties in the near-wall region.

References

1.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp. 
2407
2430
. 0029-549310.1016/j.nucengdes.2005.05.034
2.
Hall
,
W. B.
,
Jackson
,
J. D.
, and
Watson
,
A.
,
1967
, “
A Review of Forced Convection Heat Transfer to Fluids at Supercritical Pressures
,”
Proc. Inst. Mech. Eng.
,
182
(
9
), pp. 
10
22
.
3.
Cheng
,
X.
, and
Schulenberg
,
T.
,
2001
, “
Heat Transfer at Supercritical Pressures-Literature Review and Application to an HPLWR
,”
Institute for Nuclear and Energy Engineering Nuclear Safety Research
, Karlsruhe.
4.
Yamagata
,
K.
,
Yoshida
,
S.
,
Fujii
,
T.
,
Hasegawa
,
S.
, and
Nishikaw
,
K.
,
1972
, “
Forced Convective Heat-Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp. 
2575
2593
.10.1016/0017-9310(72)90148-2
5.
Adebiyi
,
G. A.
, and
Hall
,
W. B.
,
1976
, “
Experimental Investigation of Heat-Transfer to Supercritical Pressure Carbon-Dioxide in a Horizontal Pipe
,”
Int. J. Heat Mass Transfer
,
19
(
7
), pp. 
715
720
.10.1016/0017-9310(76)90123-X
6.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp. 
164
171
.10.1016/j.supflu.2007.11.013
7.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1969
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,”
ASME J. Heat Transfer
,
91
(
1
), pp. 
27
36
.10.1115/1.3580115
8.
Shitsman
,
M. E.
,
1966
, “
The Effect of Natural Convection on Temperature Conditions in Horizontal Tubes at Supercritical Pressures
,”
Therm. Eng.
,
13
(
7
), pp. 
69
75
.
9.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
, pp. 
264
(
SI:NURETH-14
),
24
40
.10.1016/j.nucengdes.2012.09.040
10.
Jackson
,
J. D.
,
Lutterodt
,
K. E.
, and
Weinberg
,
R.
,
2003
, “
Experimental Studies of Buoyancy-Influenced Convective Heat Transfer in Heated Vertical Tubes at Pressures Just Above and Just Below the Thermodynamic Critical Value
,”
GENES4/ANP2003
,
Kyoto, Japan
, .
11.
Hall
,
W. B.
,
Jackson
,
J. D.
, and
Watson
,
A.
,
1967
, “
A Review of Forced Convection Heat Transfer to Fluids at Supercritical Pressures
,”
Proc. Inst. Mech. Eng.
,
182
(
9
), pp. 
10
22
.
12.
Bae
,
J. H.
,
Yoo
,
J. Y.
,
Choi
,
H.
, and
McEligot
,
D. M.
,
2006
, “
Effects of Large Density Variation on Strongly Heated Internal Air Flows
,”
Phys. Fluids
,
18
(
7
), pp. 
075102
.10.1063/1.2216988
13.
Shehata
,
A. M.
, and
McEligot
,
D. M.
,
1998
, “
Mean Turbulence Structure in the Viscous Layer of Strongly Heated Internal Gas Flows. Measurement
,”
Int. J. Heat Mass Transfer
,
41
(
24
), pp. 
4297
4313
. 0017-931010.1016/S0017-9310(98)00088-X
14.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp. 
3077
3084
. 0017-931010.1016/0017-9310(95)00008-W
15.
He
,
S.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2008
, “
A Computational Study of Convective Heat Transfer to Carbon Dioxide at a Pressure Just Above the Critical Value
,”
Appl. Therm. Eng.
,
28
(
13
), pp. 
1662
1675
.10.1016/j.applthermaleng.2007.11.001
16.
Wen
,
Q. L.
, and
Gu
,
H. Y.
,
2010
, “
Numerical Simulation of Heat Transfer Deterioration Phenomenon in Supercritical Water Through Vertical Tube
,”
Ann. Nucl. Energy
,
37
(
10
), pp. 
1272
1280
.10.1016/j.anucene.2010.05.022
17.
Sharabi
,
M. B.
,
Ambrosini
,
W.
, and
He
,
S.
,
2008
, “
Prediction of Unstable Behaviour in a Heated Channel With Water at Supercritical Pressure by CFD Models
,”
Ann. Nucl. Energy
,
35
(
5
), pp. 
767
782
.10.1016/j.anucene.2007.09.019
18.
Kim
,
S. H.
,
Kim
,
Y. I.
,
Bae
,
Y. Y.
, and
Cho
,
B. H.
, “
Numerical Simulation of the Vertical Upward Flow of Water in a Heated Tube at Supercritical Pressure
,”
ICAPP’04: 2004 International Congress on Advances in Nuclear Power Plants
,
Pittsburgh, PA
, pp. 
5
10
.
19.
Roelof
,
F.
,
2004
, “
CFD Analysis of Heat Transfer to Supercritical Water Flowing Vertically Upward in a Tube
,” Under the contract of the Netherlands Ministry of Economic Affairs.
20.
Shang
,
Z.
,
Yao
,
Y. F.
, and
Chen
,
S.
,
2008
, “
Numerical Investigation of System Pressure Effect on Heat Transfer of Supercritical Water Flows in a Horizontal Round Tube
,”
Chem. Eng. Sci.
,
63
(
16
), pp. 
4150
4158
.10.1016/j.ces.2008.05.036
21.
Zhang
,
X. R.
, and
Yamaguchi
,
H.
,
2007
, “
Forced Convection Heat Transfer of Supercritical CO2 in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
41
(
3
), pp. 
412
420
.10.1016/j.supflu.2006.11.003
22.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer
,
124
(
3
), pp. 
413
420
.10.1115/1.1423906
23.
Gu
,
H. Y.
,
Cheng
,
X.
, and
Yang
,
Y. H.
,
2010
, “
CFD Analysis of Thermal-Hydraulic Behavior of Supercritical Water in Sub-Channels
,”
Nucl. Eng. Des.
,
240
(
2
), pp. 
364
374
.10.1016/j.nucengdes.2008.08.022
24.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
Y.
, and
Zhang
,
W.
,
2013
, “
Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes
,”
J. Heat Transfer
,
135
(
7
), pp. 
1
9
, 071703.
25.
Kao
,
M.
,
Lee
,
M.
,
Ferng
,
Y.
, and
Chieng
,
C.
,
2010
, “
Heat Transfer Deterioration in a Supercritical Water Channel
,”
Nucl. Eng. Des.
,
240
(
10
), pp. 
3321
3328
.10.1016/j.nucengdes.2010.06.028
26.
Orszag
,
S. A.
,
Yakhot
,
V.
,
Flannery
,
W. S.
,
Boysan
,
F.
,
Choudhury
,
D.
,
Maruzewski
,
J.
, and
Patel
,
B.
,
1993
, “
Renormalization Group Modeling and Turbulence Simulations
,”
International Conference on Near-Wall Turbulent Flows
,
Elsevier
,
Amsterdam
, pp. 
1031
1046
.
27.
Palko
,
D.
, and
Anglart
,
H.
,
2008
, “
Theoretical and Numerical Study of Heat Transfer Deterioration in HPLWR
,”
Sci. Technol. Nucl. Installations
,
2008
, pp. 
1
5
.10.1155/2008/405072
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp. 
1598
1605
. 0001-145210.2514/3.12149
29.
Visser
,
D. C.
,
Nijeholt
,
J. A. L. A.
, and
Roelofs
,
F.
,
2008
, “
CFD Predictions of Heat Transfer in Super Critical Flow Regime
,”
Proceedings of ICAPP 2008: 2008 International Congress on Advances in Nuclear Power Plants
,
Anaheim, CA
, pp. 
1802
1812
, .
30.
Zhu
,
Y.
,
2010
, “
Numerical Investigation of the Flow and Heat Transfer within the Core Cooling Channel of a Supercritical Water Reactor
,”
Institut für Kernenergetik und Energiesysteme, Universität Stuttgart
.
31.
Farah
,
A.
,
Kinakin
,
M.
,
Harvel
,
G.
, and
Pioro
,
I.
,
2011
, “
Numerical Study of Supercritical Water Heat Transfer in Vertical Bare Tubes Using FLUENT CFD Code
,”
5th InternationalSymposiumon SCWR (ISSCWR-5)
,
Vancouver, BC, Canada
, pp. 
1
14
.
32.
ANSYS, Inc.
,
2009
,
ANSYS FLUENT User’s Guide, Release 12.0
,
ANSYS
,
Canonsburg, PA
.
33.
Tao
,
W. Q.
,
2001
,
Numerical Heat Transfer
,
Xi’an Jiaotong University Press
,
Xi’an, China
, pp. 
333
392
.
34.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flow
,”
Numer. Heat Transfer
,
7
(
2
), pp. 
147
163
.10.1080/01495728408961817
35.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, “
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP
,”
U.S. Secretary of Commerce on Behalf of the United States of America
.
36.
Yoo
,
J. Y.
,
2013
, “
The Turbulent Flows of Supercritical Fluids With Heat Transfer
,”
Annu. Rev. Fluid Mech
,
45
, pp. 
495
525
.10.1146/annurev-fluid-120710-101234
37.
Zahlan
,
H.
,
Jiang
,
K.
,
Tavoularis
,
K.
, and
Groeneveld
,
D. C.
,
2013
, “
Measurements of Heat Transfer Coefficient, CHF and Heat Transfer Deterioration in Flows of CO2 at Near-Critical and Supercritical Pressures
,”
The 6th International Symposium on Supercritical WaterCooled Reactors, ISSCWR-6
,
Mar. 3–7
,
Shenzhen, Guangdong, China
.
You do not currently have access to this content.