Abstract

The fuel bundles in coolant systems of CANDU™ reactors operate between 250 and 310 °C (523 and 583 K). Given these extreme conditions and because of its neutronic properties, zirconium and Zircaloy-4 are used in these applications, which require corrosion resistance at elevated temperatures. However, thermodynamic and hydrolysis properties of aqueous zirconium species have not been measured above standard conditions, making prediction using standard thermodynamic tools, such as the Pourbaix (E-pH) diagram difficult. This lack of information is addressed through solubility measurements and the development of elevated temperature Pourbaix diagrams for zirconium and Zircaloy-4. These Pourbaix diagrams of zirconium and a multi-element diagram (Sn, Zr, Cr) of Zircaloy-4 were developed at 100 °C (373.15 K) and are presented in this work. Solubility measurements were made using a batch-style pressure vessel and concentration measurements were made using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), for zirconium and Zircaloy-4, respectively. For Zr(OH)62; Zr(OH)4 (aq); Zr(OH)3+; and Zr(OH)22+, the Gibbs energy of formation (ΔGf,100°C°) was found to be −2177.4±8.5 kJ/mol, −1704.9±1.5 kJ/mol, −1808.8±8.9 kJ/mol, and −1095.1±2.7 kJ/mol, respectively.

References

1.
Palazhchenko
,
O.
, and
Kaye
,
M. H.
,
2024
, “
Investigation of Metal-H2O Systems at Elevated Temperatures—Part I: Development of a Solubility Apparatus Specialized for Super-Ambient Conditions
,”
ASME J of Nuclear Rad Sci
, (accepted).10.1115/1.4066339
2.
Palazhchenko
,
O.
, and
Kaye
,
M. H.
,
2024
, “
Investigation of Metal-H2O Systems at Elevated Temperatures—Part II: SnO2 (s) Solubility Data and New Sn Pourbaix Diagrams at 298.15 K and 358.15 K
,”
ASME J of Nuclear Rad Sci
, (accepted).10.1115/1.4066340
3.
Verink
, and
E. D.
, Jr.
,
2011
, “
Simplified Procedure for Constructing Pourbaix Diagrams
,”
Uhlig's Corrosion Handbook
, 3rd ed.,
R. W.
Revie
, ed., John Wiley and Sons, Inc., Hoboken, NJ, pp.
93
102
.
4.
Northwood
,
D. O.
,
1985
, “
The Development and Applications of Zirconium Alloys
,”
Mater. Des.
,
6
(
2
), pp.
58
70
.10.1016/0261-3069(85)90165-7
5.
Bale
,
C. W.
,
Belisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
, and
Hack
,
K.
, et al.,
2016
, “
FactSage Thermochemical Software and Databases, 2010–2016
,”
Calphad
,
54
, pp.
35
53
.10.1016/j.calphad.2016.05.002
6.
Brown
,
P. L.
,
Curti
,
E.
, and
Ekberg
,
C.
,
2005
,
Chemical Thermodynamics of Zirconium
, 1st ed.,
J.
Perrone
, and
M.
Illemassene
, eds., OECD Nuclear Energy Agency, Issy-es-Moulineaux, France.
7.
Shock
,
E. L.
,
Sassani
,
D. C.
,
Willis
,
M.
, and
Sverjensky
,
D. A.
,
1997
, “
Inorganic Species in Geologic Fluids: Correlations Among Standard Molal Thermodynamic Properties of Aqueous Ions and Hydroxide Complexes
,”
Geochim. Cosmochim. Acta
,
61
(
5
), pp.
907
950
.10.1016/S0016-7037(96)00339-0
8.
Criss
,
C. M.
, and
Cobble
,
J. W.
,
1964
, “
The Thermodynamic Properties of High Temperature Aqueous Solutions. IV. Entropies of the Ions Up to 200° and the Correspondence Principle
,”
J. Am. Chem. Soc.
,
86
(
24
), pp.
5385
5390
.10.1021/ja01078a003
9.
Criss
,
C. M.
, and
Cobble
,
J. W.
,
1964
, “
The Thermodynamic Properties of High Temperature Aqueous Solutions. V. The Calculation of Ionic Heat Capacities Up to 200°. Entropies and Heat Capacities Above 200°
,”
J. Am. Chem. Soc.
,
86
(
24
), pp.
5390
5393
.10.1021/ja01078a004
10.
Gamsjager
,
H.
,
Gajda
,
T.
,
Sangster
,
J.
,
Saxena
,
S. K.
, and
Voigt
,
W.
,
2012
,
Chemical Thermodynamics of Tin
, 1st ed., J. Perrone, ed., OECD Nuclear Energy Agency, Issy-es-Moulineaux, France.
11.
ThermoChimie Partners
,
2022
, “
Thermo-Chimie, Version V11a
,” ThermoChimie Consortium, Chatenay-Malabry, France.
12.
Francolini
,
G. J.
,
2023
, “
Developing an Elevated Temperature Pourbaix Diagram for Zirconium and Multi-Element Pourbaix Diagram of Zircaloy-4
,” Master's thesis,
University of Ontario Institute of Technology
,
Oshawa, ON, Canada
.
13.
Dellien
,
I.
,
Hall
,
F. M.
, and
Hepler
,
L. G.
,
1976
, “
Chromium, Molybdenum, and Tungsten: Thermodynamic Properties, Chemical Equilibriums, and Standard Potentials
,”
Chem. Rev.
,
76
(
3
), pp.
283
310
.10.1021/cr60301a001
14.
Beverskog
,
B.
, and
Puigdomenech
,
I.
,
1997
, “
Revised Pourbaix Diagrams for Chromium at 25–300 °C
,”
Corros. Sci.
,
39
(
1
), pp.
43
57
.10.1016/S0010-938X(97)89244-X
15.
Palazhchenko
,
O.
,
2012
, “
Pourbaix Diagrams at Elevated Temperatures: A Study of Zn and Sn
,” Master's thesis,
University of Ontario Institute of Technology
,
Oshawa, ON, Canada
.
16.
Skoog
,
D. A.
,
Holler
,
J. F.
, and
Crouch
,
S. R.
,
2018
,
Principles of Instrumental Analysis
, 7th ed.,
Cengage Learning
, Boston, MA.
17.
Wang
,
M.
,
Zhang
,
Y.
, and
Muhammed
,
M.
,
1997
, “
Critical Evaluation of Thermodynamics of Complex Formation of Metal Ions in Aqueous Solutions I. A Description of Evaluation Methods
,”
Hydrometallurgy
,
45
(
1–2
), pp.
21
36
.10.1016/S0304-386X(96)00072-2
18.
Manov
,
G. G.
,
Bates
,
R. G.
,
Hamer
,
W. J.
, and
Acree
,
S. F.
,
1943
, “
Values of the Constants in the Debye-Hückel Equation for Activity Coefficients
,”
J. Am. Chem. Soc.
,
65
(
9
), pp.
1765
1767
.10.1021/ja01249a028
19.
Kraš
,
A.
, and
Milošev
,
I.
,
2023
, “
The Aqueous Chemistry of Zirconium as a Basis for Better Understanding the Formation of Zirconium Conversion Coatings: Updated Thermodynamic Data
,”
J. Electrochem. Soc.
,
170
(
2
), p.
021508
.10.1149/1945-7111/acb9c2
20.
Curti
,
E.
, and
Degueldre
,
C.
,
2002
, “
Solubility and Hydrolysis of Zr Oxides: A Review and Supplemental Data
,”
Radiochim. Acta
,
90
(
9–11
), pp.
801
804
.10.1524/ract.2002.90.9-11_2002.801
21.
Qiu
,
L.
,
Guzonas
,
D. A.
, and
Webb
,
D. G.
,
2009
, “
Zirconium Dioxide Solubility in High Temperature Aqueous Solutions
,”
J. Solution Chem.
,
38
(
7
), pp.
857
867
.10.1007/s10953-009-9412-5
22.
Aja
,
S. U.
,
Wood
,
S. A.
, and
Williams-Jones
,
A. E.
,
1995
, “
The Aqueous Geochemistry of Zr and the Solubility of Some Zr-Bearing Minerals
,”
Appl. Geochem.
,
10
(
6
), pp.
603
620
.10.1016/0883-2927(95)00026-7
23.
Shock
,
E. L.
,
Helgeson
,
H. C.
, and
Sverjensky
,
D. A.
,
1989
, “
Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Standard Partial Molal Properties of Inorganic Neutral Species
,”
Geochim. Cosmochim. Acta
,
53
(
9
), pp.
2157
2183
.10.1016/0016-7037(89)90341-4
24.
Tanger
,
J. C.
, and
Helgeson
,
H. C.
,
1988
, “
Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes
,”
Am. J. Sci.
,
288
(
1
), pp.
19
98
.10.2475/ajs.288.1.19
25.
Jin
,
G.
,
Xu
,
C.
,
Hu
,
S.
, and
Zhou
,
X.
,
2020
, “
Temperature Dependent Electrochemical Equilibrium Diagram of Zirconium-Water System Studied With Density Functional Theory and Experimental Thermodynamic Data
,”
J. Nucl. Mater.
,
532
, p.
152036
.10.1016/j.jnucmat.2020.152036
You do not currently have access to this content.