Abstract

This study assessed the response function of a p-type and n-type coaxial high-purity germanium (HPGe) detector via Monte Carlo N-Particle eXtended (MCNPX). MCNPX was employed to model the Coaxial Ge detectors, and for a precise simulation, the dimensions of the dead layer of germanium crystals were added. The dead layer was separated into front and lateral surfaces, and the thickness of each dead layer was modeled. In this work, the simulated detectors have been performed at different energy lines using a radioactive source Eu-152 to study the response function of each with dead layer variations for the front dead layer and study the range of relative deviation of the Monte Carlo simulation outputs from the manufactured declared data. The results proved that the n-type coaxial HPGe detector is more sensitive to the dead layer change than the p-type with a thick change of 0.01 mm. This research has significant effects on the efficiencies of the radiation detection systems in the energy range ∼ (120–1410) keV.

References

1.
Knoll
,
G. F.
,
2010
,
Radiation Detection and Measurement
, 4th ed.,
Wiley Inc.
,
Hoboken, NJ
, pp.
416
419
.https://indico-tdli.sjtu.edu.cn/event/171/contributions/2123/attachments/982/1592/Knoll4thEdition.pdf
2.
Aguiar
,
J. C.
,
Galiano
,
E.
, and
Fernandez
,
J.
,
2006
, “
Peak Efficiency Calibration for Attenuation Corrected Cylindrical Sources in Gamma-Ray Spectrometry by the Use of a Point Source
,”
Appl. Radiat. Isot.
,
64
(
12
), pp.
1643
1647
.10.1016/j.apradiso.2006.05.014
3.
Aguiar-Amado
,
P. P.
,
Amado
,
V. A.
, and
Aguiar
,
J. C.
,
2021
, “
Full-Energy Peak Determination From Total Efficiency and Peak-to-Total Ratio Calculations
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
990
, p.
164980
.10.1016/j.nima.2020.164980
4.
Satti
,
K. H.
,
Siddique
,
M. T.
,
Dilband
,
M.
,
Rehman
,
S. U.
,
Mansoor
,
S.
, and
Malik
,
A. H.
,
2023
, “
A Novel Method to Estimate the Dead Layer of HPGe Detector for Monte Carlo FEPE Computation
,”
Appl. Radiat. Isot.
,
202
, p.
111067
.10.1016/j.apradiso.2023.111067
5.
Chham
,
E.
,
Piñero
,
G.
,
El Bardouni
,
T.
,
Angeles
,
M.
,
Azahra
,
M.
,
Benaalilou
,
K.
,
Krikiz
,
M.
, et al.,
2015
, “
Monte Carlo Analysis of the Influence of Germanium Dead Layer Thickness on the HPGe Gamma Detector Experimental Efficiency Measured by Use of Extended Sources
,”
Appl. Radiat. Isot.
,
95
, pp.
30
35
.10.1016/j.apradiso.2014.09.007
6.
Andreotti
,
E.
,
Hult
,
M.
,
Marissens
,
G.
,
Lutter
,
G.
,
Garfagnini
,
A.
,
Hemmer
,
S.
, and
von Sturm
,
K.
,
2014
, “
Determination of Dead-Layer Variation in HPGe Detectors
,”
Appl. Radiat. Isot.
,
87
, pp.
331
335
.10.1016/j.apradiso.2013.11.046
7.
Huy
,
N. Q.
,
2010
, “
The Influence of Dead Layer Thickness Increase on Efficiency Decrease for a Coaxial HPGe p-Type Detector
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
621
(1–3), pp.
390
394
.10.1016/j.nima.2010.05.007
8.
Huy
,
N. Q.
,
2011
, “
Dead-Layer Thickness Effect for Gamma Spectra Measured in an HPGe Ptype Detector
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
641
(
1
), pp.
101
104
.10.1016/j.nima.2011.02.097
9.
Huy
,
N. Q.
,
Binh
,
D. Q.
, and
An
,
V. X.
,
2007
, “
Study on the Increase of Inactive Germanium Layer in a High Purity Germanium Detector After a Longtime Operation Applying Code
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
573
(
3
), pp.
384
388
.10.1016/j.nima.2006.12.048
10.
Ródenas
,
J.
,
Pascual
,
A.
,
Zarza
,
I.
,
Serradell
,
V.
,
Ortiz
,
J.
, and
Ballesteros
,
L.
,
2003
, “
Analysis of the Influence of Germanium Dead Layer on Detector Calibration Simulation for Environmental Radioactive Samples Using the Monte Carlo Method
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
496
(
2–3
), pp.
390
399
.10.1016/S0168-9002(02)01748-5
11.
Cox
,
C. E.
,
Lowe
,
B. G.
, and
Sareen
,
R. A.
,
1988
, “
Small Area High Purity Germanium Detectors for Use in the Energy Range 100 eV to 100 keV
,”
IEEE Trans. Nucl. Sci.
,
35
(
1
), pp.
28
32
.10.1109/23.12667
12.
Wu
,
Z.
,
Wang
,
B.
, and
Sun
,
J.
,
2023
, “
Characterization of the Thickness of Dead Layer and Cold Finger for Portable HPGe γ-Spectrometer
,”
Radiat. Phys. Chem.
,
204
, p.
110665
.10.1016/j.radphyschem.2022.110665
13.
Panuntun
,
F.
,
Siswanti
,
Utami
,
J. B.
, and
Salam
,
M.
,
2021
, “
Validation of HPGe Efficiency Modeling by MCNP5 for Volume Source
,”
AIP Conf. Proc.
,
2381
(
1
), p.
020056
.10.1063/5.0066902
14.
Subercaze
,
A.
,
Sauzedde
,
T.
,
Domergue
,
C.
,
Destouches
,
C.
,
Philibert
,
H.
,
Fausser
,
C.
,
Thiollay
,
N.
, et al.,
2022
, “
Effect of the Geometrical Parameters of an HPGe Detector on Efficiency Calculations Using Monte Carlo Methods
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
1039
, p.
167096
.
15.
Boson
,
J.
,
Ågren
,
G.
, and
Johansson
,
L.
,
2008
, “
A Detailed Investigation of HPGe Detector Response for Improved Monte Carlo Efficiency Calculations
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
587
(
2–3
), pp.
304
314
.10.1016/j.nima.2008.01.062
16.
Chuong
,
H. D.
,
Thanh
,
T. T.
,
Ngoc Trang
,
L. T.
,
Nguyen
,
V. H.
, and
Tao
,
C. V.
,
2016
, “
Estimating Thickness of the Inner Dead-Layer of n-Type HPGe Detector
,”
Appl. Radiat. Isot.
,
116
, pp.
174
177
.10.1016/j.apradiso.2016.08.010
17.
Bölükdemir
,
M.
,
Uyar
,
E.
,
Aksoy
,
G.
,
Ünlü
,
H.
,
Dikmen
,
H.
, and
Özgür
,
M.
,
2021
, “
Investigation of Shape Effects and Dead Layer Thicknesses of a Coaxial HPGe Crystal on Detector Efficiency by Using PHITS Monte Carlo Simulation
,”
Radiat. Phys. Chem.
,
189
, p.
109746
.10.1016/j.radphyschem.2021.109746
18.
Georgali
,
E.
,
Stamati
,
M.
,
Peoviti
,
M.
,
Patronis
,
N.
,
Potiriadis
,
C.
,
Karfopoulos
,
K.
,
Anastasiadis
,
A.
, et al.,
2020
, “
Characterization of the Canberra BE5030 broad energy high Purity Germanium Detector by Means of the GEANT4 Monte Carlo Simulation Package
,”
HNPS Adv. Nucl. Phys.
,
27
, pp.
152
154
.10.12681/hnps.3002
19.
Loan
,
T. T. H.
,
Ba
,
V. N.
,
Thy
,
T. H. N.
,
Hong
,
H. T. Y.
, and
Huy
,
N. Q.
,
2018
, “
Determination of the Dead-Layer Thickness for Both p-and n- Type HPGe Detectors Using the Two-Line Method
,”
J. Radioanalytical Nucl. Chem.
,
315
(
1
), pp.
95
101
.10.1007/s10967-017-5637-8
20.
Ješkovský
,
M.
,
Javorník
,
A.
,
Breier
,
R.
,
Slučiak
,
J.
, and
Povinec
,
P. P.
,
2019
, “
Experimental and Monte Carlo Determination of HPGe Detector Efficiency
,”
J. Radioanal. Nucl. Chem.
,
322
(
3
), pp.
1863
1869
.10.1007/s10967-019-06856-4
21.
Khan
,
W.
,
Zhang
,
Q.
,
He
,
C.
, and
Saleh
,
M.
,
2018
, “
Monte Carlo Simulation of the Full Energy Peak Efficiency of an HPGe Detector
,”
Appl. Radiat. Isot.
,
131
, pp.
67
70
.10.1016/j.apradiso.2017.11.018
22.
Saheli
,
F.
,
Riazi
,
Z.
,
Jokar
,
A.
,
Shahabinejad
,
H.
,
Vosoughi
,
N.
, and
Ghasemi
,
S.
,
2021
, “
Evaluation the Nonlinear Response Function of a HPGe Detector for 59 keV to 10.7 MeV Gamma-Rays Using a Monte Carlo Simulation and Comparison With Experimental Data
,”
J. Instrum.
,
16
(
7
), p.
P07003
.10.1088/1748-0221/16/07/P07003
23.
Dryak
,
P.
,
2006
, “
Experimental and MC Determination of HPGe Detector Efficiency in the 40-2754 keV Energy Range Measuring Point Source Geometry With the Source-to-Detector Distance 25 cm
,”
Appl. Radiat. Isot.
,
64
(
10–11
), pp.
1346
1349
.10.1016/j.apradiso.2006.02.083
24.
Soo Hyun Byun
,
2017–2018
, “
Chapter 8 Hyper-Pure Germanium Detector
,”
Radioisotopes and Radiation Methodology, McMaster University Hamiltion
,
ON, Canada
.
25.
Ortec
,
2024
, P-type Coaxial HPGe Detectors for High Performance Gamma Spectroscopy in the Energy Range of ∼40 kev and Up,
Ortec
,
Oak Ridge, TN
, accessed Apr. 27, 2024, https://www.ortec-online.com/products/radiation-detectors/high-purity-germanium-hpge-radiation-detectors/hpge-radiation-detector-types-how-choose/gem-p-type-coaxial-hpge-radiation-detectors
26.
Ortec
,
2024
, GAMMA-X: N-type Coaxial HPGe Detectors for High-Performance Gamma Spectroscopy in the Energy Range of ∼3 keV and Upward,
Ortec
,
Oak Ridge, TN
, accessed Apr. 27, 2024, https://www.ortec-online.com/products/radiation-detectors/high-purity-germanium-hpge-radiation-detectors/hpge-radiation-detector-types-how-choose/gmx-n-type-coaxial-hpge-radiation-detectors
27.
Kaya
,
S.
,
Çelik
,
N.
, and
Bayram
,
T.
,
2022
, “
Effect of Front Lateral and Back Dead Layer Thicknesses of a HPGe Detector on Full Energy Peak Efficiency
,”
Nucl. Inst. Methods Phys. Res., A
,
1029
, p.
166401
.10.1016/j.nima.2022.166401
28.
Steven
,
R. E.
,
2008
, “
The Majorana Project
,”
J. Phys. Conf. Ser.
,
39
, pp.
341
343
.10.1088/1742-6596/39/1/088
29.
Lee
,
H.
,
Sung
,
S. H.
,
Shin
,
S. H.
, and
Kim
,
H. R.
,
2023
, “
Dead Layer Estimation of an HPGe Detector Using MCNP6 and Geant4
,”
Appl. Radiat. Isot.
,
192
, p.
110597
.10.1016/j.apradiso.2022.110597
You do not currently have access to this content.