Abstract

This study presents an application of a long short-term memory autoencoder (LSTM AE) for the detection of broken rails based on laser Doppler vibrometer (LDV) measurements. This work is part of an ongoing project aimed at developing a noncontact damage detection system using LDV measurements. The damage detection system consists of two LDVs mounted on a moving rail car to measure vibrations induced on the rail head. Field tests were carried out at the Transportation Technology Center (TTC) in Pueblo, CO, to collect the vibrational data. This study focused on the detection of broken rails. To simulate the reflected and transmitted waves induced by the broken rail, a welded joint was used. The data were collected from moving LDV measurements, in which the train was operating at three different speeds: 16 km/h (10 mph), 32 km/h (20 mph), and 48 km/h (30 mph). After obtaining the data, filtering and signal processing were applied to obtain the signal features in time and frequency domains. Next, correlation analysis and principal component analysis were carried out for feature selection and dimension reduction to determine the input used to train and test the LSTM AE model. In this study, the LSTM AE models were trained based on different data sets for anomaly detection. Consequently, an automatic anomaly detection approach for anomaly detection based on the LSTM AE model was evaluated. The results show that the LSTM AE model can efficiently detect the anomaly based on the selected features at three different speeds.

References

1.
Esveld
,
C.
,
2001
,
Modern Railway Track
,
MRT-productions
,
Zaltbommel
.
2.
Rose
,
J. L.
,
2003
, “
Elastic Wave Analysis for Broken Rail Detection
,”
AIP Conf. Proc.
,
615
(
1
), pp.
1806
1812
.
3.
Mariani
,
S.
,
Nguyen
,
T.
,
Phillips
,
R. R.
,
Kijanka
,
P.
,
Lanza di Scalea
,
F.
,
Staszewski
,
W. J.
,
Fateh
,
M.
, and
Carr
,
G.
,
2013
, “
Noncontact Ultrasonic Guided Wave Inspection of Rails
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
539
548
.
4.
Coccia
,
S.
,
Bartoli
,
I.
,
Salamone
,
S.
,
Phillips
,
R.
,
di Scalea
,
F. L.
,
Fateh
,
M.
, and
Carr
,
G.
,
2009
, “
Noncontact Ultrasonic Guided Wave Detection of Rail Defects
,”
Transp. Res. Rec.
,
2117
(
1
), pp.
77
84
.
5.
Mahajan
,
H.
, and
Banerjee
,
S.
,
2022
, “
Quantitative Investigation of Acoustic Emission Waveform Parameters From Crack Opening in a Rail Section Using Clustering Algorithms and Advanced Signal Processing
,”
Sensors
,
22
(
22
), p.
8643
.
6.
Mahajan
,
H.
, and
Banerjee
,
S.
,
2023
, “
Acoustic Emission Source Localisation for Structural Health Monitoring of Rail Sections Based on a Deep Learning Approach
,”
Meas. Sci. Technol.
,
34
(
4
), p.
044010
.
7.
Magel
,
E. E.
,
2011
, “Rolling Contact Fatigue: A Comprehensive Review,” http://www.fra.dot.gov.
8.
Anandika
,
R.
, and
Lundberg
,
J.
,
2022
, “
Limitations of Eddy Current Inspection for the Characterization of Near-Surface Cracks in Railheads
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
236
(
5
), pp.
532
544
.
9.
Ge
,
H.
,
Chua Kim Huat
,
D.
,
Koh
,
C. G.
,
Dai
,
G.
, and
Yu
,
Y.
,
2022
, “
Guided Wave–Based Rail Flaw Detection Technologies: State-of-the-Art Review
,”
Struct. Health Monit.
,
21
(
3
), pp.
1287
1308
.
10.
Benson
,
D. J.
, and
Buckingham
,
M. J.
,
2015
, “
Non-Contact Ultrasonic Guided Wave Inspection of Rails: Next Generation Approach
,”
Ph.D. dissertation
,
University of California
,
San Diego
.
11.
Di Scalea
,
F. L.
,
Zhu
,
X.
,
Capriotti
,
M.
,
Liang
,
A. Y.
,
Mariani
,
S.
, and
Sternini
,
S.
,
2018
, “
Passive Extraction of Dynamic Transfer Function From Arbitrary Ambient Excitations: Application to High-Speed Rail Inspection From Wheel-Generated Waves
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
1
(
1
), p.
011005
.
12.
Wang
,
S. J.
,
Chen
,
X. Y.
,
Jiang
,
T.
, and
Kang
,
L.
, “
Electromagnetic Ultrasonic Guided Waves Inspection of Rail Base
,”
FENDT 2014—Proceedings, 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing: New Technology and Application, Increasingly Perfect NDT/E
,
Chengdu, China.
,
June 20–23
, Institute of Electrical and Electronics Engineers Inc., pp.
135
139
.
13.
Loveday
,
P. W.
, and
Long
,
C. S.
,
2015
, “
Laser Vibrometer Measurement of Guided Wave Modes in Rail Track
,”
Ultrasonics
,
57
(
C
), pp.
209
217
.
14.
Kaynardag
,
K.
,
Battaglia
,
G.
,
Yang
,
C.
, and
Salamone
,
S.
,
2020
, “
Experimental Investigation of the Modal Response of a Rail Span During and After Wheel Passage
,”
Transp. Res. Rec.
,
2674
(
12
), pp.
15
24
.
15.
Kaynardag
,
K.
,
Yang
,
C.
, and
Salamone
,
S.
,
2023
, “
A Rail Defect Detection System Based on Laser Doppler Vibrometer Measurements
,”
NDTE Int.
,
137
, p.
102858
.
16.
Yang
,
C.
,
Kaynardag
,
K.
, and
Salamone
,
S.
,
2023
, “
Missing Rail Fastener Detection Based on Laser Doppler Vibrometer Measurements
,”
J. Nondestr. Eval.
,
42
(
3
), p.
68
.
17.
Zhang
,
Z.
,
Che
,
X.
, and
Song
,
Y.
,
2022
, “
An Improved Convolutional Neural Network for Convenient Rail Damage Detection
,”
Front. Energy Res.
,
10
, p.
1007188
.
18.
Ji
,
A.
,
Woo
,
W. L.
,
Wong
,
E. W. L.
, and
Quek
,
Y. T.
,
2021
, “
Rail Track Condition Monitoring: A Review on Deep Learning Approaches
,”
Intell. Rob.
,
1
(
2
), pp.
151
175
.
19.
Liu
,
W.
,
Tang
,
Z.
,
Zhang
,
P.
,
Chen
,
X.
, and
Yang
,
B.
, “
Damage Detection in Switch Rails via Machine Learning
,”
2021 IEEE Second International Conference on Pattern Recognition and Machine Learning, PRML 2021
,
Chengdu, China
,
July 16–18
, Institute of Electrical and Electronics Engineers Inc., pp.
6
12
.
20.
Lu
,
J.
,
Liang
,
B.
,
Lei
,
Q.
,
Li
,
X.
,
Liu
,
J.
,
Liu
,
J.
,
Xu
,
J.
, and
Wang
,
W.
,
2020
, “
SCueU-Net: Efficient Damage Detection Method for Railway Rail
,”
IEEE Access
,
8
, pp.
125109
125120
.
21.
Liu
,
P.
,
Sun
,
X.
,
Han
,
Y.
,
He
,
Z.
,
Zhang
,
W.
, and
Wu
,
C.
,
2022
, “
Arrhythmia Classification of LSTM Autoencoder Based on Time Series Anomaly Detection
,”
Biomed. Signal Process. Control
,
71
, p.
103228
.
22.
Sharma
,
B.
,
Pokharel
,
P.
, and
Joshi
,
B.
, “
User Behavior Analytics for Anomaly Detection Using LSTM Autoencoder-Insider Threat Detection
,”
The 11th International Conference on Advances in Information Technology
,
Bangkok Thailand
,
July 1–3
, pp.
1
9
.
23.
Nguyen
,
H. D.
,
Tran
,
K. P.
,
Thomassey
,
S.
, and
Hamad
,
M.
,
2021
, “
Forecasting and Anomaly Detection Approaches Using LSTM and LSTM Autoencoder Techniques With the Applications in Supply Chain Management
,”
Int. J. Inf. Manage.
,
57
, p.
102282
.
24.
Homayouni
,
H.
,
Ghosh
,
S.
,
Ray
,
I.
,
Gondalia
,
S.
,
Duggan
,
J.
, and
Kahn
,
M. G.
, “
An Autocorrelation-Based LSTM-Autoencoder for Anomaly Detection on Time-Series Data
,”
Proceedings—2020 IEEE International Conference on Big Data, Big Data 2020
,
Atlanta, GA
,
Dec. 10–13
, Institute of Electrical and Electronics Engineers Inc., pp.
5068
5077
.
25.
Su
,
Y.
,
Huang
,
G.
, and
lin Xu
,
Y.
,
2015
, “
Derivation of Time-Varying Mean for Non-Stationary Downburst Winds
,”
J. Wind Eng. Ind. Aerodyn.
,
141
, pp.
39
48
.
26.
Kaynardag
,
K.
,
Yang
,
C.
, and
Salamone
,
S.
,
2025
, “
An Impulsive Noise Filter for Rail Vibration Measurements Using a Laser Doppler Vibrometer on a Moving Platform
,”
Mech. Syst. Signal Process.
,
223
, p.
111918
.
27.
Loveday
,
P. W.
, and
Long
,
C. S.
,
2015
, “
Long Range Guided Wave Defect Monitoring in Rail Track Long Range Guided Wave Defect Monitoring in Rail Track
,”
AIP Conf. Proc.
,
1581
(
1
), pp.
179
185
.
28.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
,
2001
, “
Modal Identification of Output-Only Systems Using Frequency Domain Decomposition
,”
Smart Mater. Struct.
,
10
(
3
), pp.
441
445
.
29.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
,
Springer
.
30.
Long
,
C. S.
, and
Loveday
,
P. W.
,
2014
, “
Prediction of Guided Wave Scattering by Defects in Rails Using Numerical Modelling
,”
AIP Conf. Proc.
,
1581
(
1
), pp.
240
247
.
31.
Loveday
,
P. W.
,
Long
,
C. S.
, and
Ramatlo
,
D. A.
,
2020
, “
Ultrasonic Guided Wave Monitoring of an Operational Rail Track
,”
Struct. Health. Monit.
,
19
(
6
), pp.
1666
1684
.
32.
Bartoli
,
I.
,
Marzani
,
A.
,
Di Scalea
,
F. L.
, and
Viola
,
E.
,
2006
, “
Modeling Guided Wave Propagation for Structural Monitoring of Damped Waveguides
,”
Proceedings of the Third European Workshop—Structural Health Monitoring 2006
,
Granada, Spain
,
July 5–7
, pp.
1054
1061
.
33.
Gao
,
Y.
,
Wang
,
P.
,
Wang
,
K.
,
Xu
,
J.
, and
Dong
,
Z.
,
2021
, “
Damage Tolerance of Fractured Rails on Continuous Welded Rail Track for High-Speed Railways
,”
Railw. Eng. Sci.
,
29
(
1
), pp.
59
73
.
34.
Kaynardag
,
K.
,
Yang
,
C.
, and
Salamone
,
S.
,
2022
, “
Numerical Simulations to Examine the Interaction of Train-Induced Guided Waves With Transverse Cracks
,”
Transp. Res. Rec.
,
2676
(
12),
pp.
166
179
.
35.
Yang
,
C.
,
Asce
,
S. M.
,
Kaynardag
,
K.
,
Asce
,
S. M.
,
Salamone
,
S.
, and
Asce
,
M.
,
2022
, “
Evaluation of Fastening Modeling Approaches for Dynamic Assessment of Rail Based on Finite-Element Method
,”
J. Eng. Mech.
,
148
(
2016
), pp.
1
13
.
36.
Duhamel
,
D.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2006
, “
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures
,”
J. Sound Vib.
,
294
(
1–2
), pp.
205
220
.
37.
Yang
,
C.
,
Kaynardag
,
K.
, and
Salamone
,
S.
,
2023
, “
Investigation of Wave Propagation and Attenuation in Periodic Supported Rails Using Wave Finite Element Method
,”
Acta Mech.
,
235
(
3
) pp.
1453
1469
.
38.
Rizzo
,
P.
,
Cammarata
,
M.
,
Bartoli
,
I.
,
Di Scalea
,
F. L.
,
Salamone
,
S.
,
Coccia
,
S.
, and
Phillips
,
R.
,
2010
, “
Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests
,”
Adv. Civil Eng.
,
2010
(
1
), p.
291293
.
You do not currently have access to this content.